
00
CD
CO

00
CO
Q

THE UNIVERSITY OF MICHIGAN

•v Technical Report 10

CONCOMP

November 1968

LOCOSS: A MULTIPROGRAMMING MONITOR FOR THE DEC PDP-7

D. R. Frantz, R. F. Brender, and J. L Foy, Jr.

.

s

r
D^fe

jw^o

This document has been
for public rolcoBO cowl salo; It»
cdslribution is unUmitod.

THE UNIVERSITY OF MICHIGAN

Technical Report 10

LOCOSS: A Multiprogramming Monitor for the DEC PDP-7

D,R. Frantz
R.F. Brender
J.L. Foy, Jr.

CONCOMP: Research in Conversational Use of Computers
F.H. Westervelt, Project Director

ORA Project 07449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

November 1968

mm

ABSTRACT

LOCOSS (Logic of Computers Operating System for the PDP-

Seven) was developed to provide a suitable run-time environment

in which to run applications programs. Multiprogramming capa-

bilities are an essential part of the system and allow a flex-

ible organization. Provision is made for alternate methods of

establishing a separate (parallel) line of execution and for

invoking a subtask. EVENTS provide a flexible means of inter-

task communication. A keyboard Command Interpreter provides

a number of real-time control services and simple debugging

aids. Input/output is buffered, overlapped, and essentially

device-independent, allowing users to write programs with re-

ferences to generalized "sources" and "sinks." I/O devices

supported are: teletype, paper tape reader and punch, 201A

dataphone, IBM 1800 (the disk file system and running programs),

and the 337 display as a character sink. Additional subroutines

are available for such user needs as reading and writing octal

or decimal numbers, loading a program from the IBM 1800 disk,and

setting an interval timer.

in

TABLE OF CONTENTS

Page

ABSTRACT

LIST OF TABLES.

1. INTRODUCTION

PDP-7 System Summary
1800 System Summary.

LOCOSS USER'S MANUAL

2,1 Introduction...

2.1.1 Summary of System Components
2.1.2 System Communication Area...
2.1.3 Operating Procedures

2.2 Multiprogramming

2.2.1 Basic Philosophy
2.2.2 Event Control...
2.2.3 Subroutine Calls

2.3 Command Language Interpreter

2.3.1 General Commands
2.3.2 Disk File Control Commands
2.3.3 Device Assignment Commands

2.4 General Service Routines
2.5 Input/Output

2.5.1 Introduction
2.5.2 Device Descriptions

2.5.2.1 Paper Tape Punch
2.5.2.2 Paper Tape Reader
2.5.2.3 Teleprinter
2.5.2.4 Keyboard
2.5.2.5 IBM 1800 Logical Disk Files
2.5.2.6 IBM 1800 Copy Port
2.5.2.7 Character Generator Package
2.5.2.8 Dataphone ,

2.6 Buffer Management

APPENDIX A. LOCOSS USER SYMBOLS

v

in

ix

1

5
6

7
10
12

18

18
21
23

28

29
32
34

38
45

45
47

47
49
51
55
61
71
74
85

98

103

■Mte
m

TABLE OF CONTENTS (cont'd)

Page

APPENDIX B. SYSTEMS INFORMATION 109

TASK QUEUE Ill
EVENT CONTROL 114
THE COMMAND LANGUAGE INTERPRETER 116
IBM 18U0 COMMUNICATION ROUTINES 118

BIBLIOGRAPHY 120

VI i

i

LIST OF TABLES

Table Page

1 Device Assignment Table 37

2 Disk Operation Codes 67

3 Disk Error Codes 69

4 Dataphone Control Characters 97

IX

1. INTRODUCTION

This is the first of three related reports describing work

performed by members of the Logic of Computers Group, a research

unit of the Department of Computer and Communication Sciences

at The University of Michigan.

The Logic of Computers Group computer facility consists of

two, small, general-purpose computers and related peripheral

equipment. It is intended to provide a vehicle for heuristic

investigation of problems involving large-scale simulations of

generalized adaptive systems, including a large class of biolog-

ically oriented models.

This report documents those portions of the system software

that are largely or completely finished, and that are not likely

to undergo further substantial development. It is intended to

1. serve as a progress and research report describing the

capabilities of the current software,

2. serve as a user's manual, and

3. provide enough system information to allow later users

to modify or maintain the system

While these are system types of programs, their development

has been necessary to allow for further work. The LOCOSS system

for the PDP-7 and the 1800 file system are basic and flexible

tools. Descriptions of several other systems components are in-

cluded for completeness. The particular hardware configuration

is summarized at the end of this section.

-1-

In general, the TSX system provided by IBM is the basic

software nucleus for the 1800. LOCOSS is the basic software

nucleus on the PDP-7.

LOCOSS is the Logic of Computers Operating System for the

PDP-Seven. It was developed to provide a suitable run-time

environment in which to run application programs. It provides

buffered, overlapped, and essentially device-independent input/

output. A keyboard Command Interpreter provides a number of

real-time control services and simple debugging aids. Multi-

programming capabilities are an essential part of the system

organization and allow flexible organization of application

programs.

LOCOSS, in our estimation, provides unusually flexible

capabilities and services on a machine of this size, and requires

less than 2K (decimal) of core.

The availability of bulk storage on the 1800 disk via the

"minor" 1800-PDP-7 interface (in use since April 1968) made it

feasible to provide system programs and, perhaps more important-

ly, user source files, "on-line."

To implement this, a disk file system was developed for the

1800. This system provides variable-length, serial-by-character

data files to both 1800 and PDP-7 users. Both symbolic and

binary data are kept on-line in this manner. A keyboard utility

routine on the 1800 provides simple means to load, dump, list,

or copy from or to all 1800 I/O devices and the disk files.

Even the approximately tripled listing rate possible with the

-3-
I

1050 printer (15 characters per second, hardware tabs) has been

very useful. The pace of program development accelerated great-

ly as it became possible to be more and more disk-oriented. It

was necessary to provide a new text editor because modification

of the available one proved impossible. In addition to taking

advantage of the device-independent I/O of LOCGSS, the editor

provides a couple of string search and replacement commands that

are quite useful.

The PDP-7 Assembler was adapted to accept disk file input,

although it still punches object code on tape, DDT was made

available on-line, and may be loaded and called from LOCOSS.

A very powerful macro language, ML-I, was adapted to the disk

I/O and made a part of the system. Thus program creation, edit-

ing, assembly, debugging, and execution all take place on-line

under control of LOCOSS with a minimum of superfluous hard copy

generation.

While the current interface is sufficiently fast for these

human-oriented tasks, it will not suffice for the kind of inter-

active processing desired for the problem-oriented system.

Therefore, the authois designed a high-speed, general-purpose

interface (described in a separate report*). It offers flexi-

bility and control substantially beyond current interfacing

practice as we know it. The general ideas employed in it should

Brender, R.F., and Foy, J.L. Jr., Flexible High-Speed
Interface between IBM 1800 and DEC PDP-7 Computers, Technical
Report 12, Concomp Project, University of Michigan, Ann Arbor,
October 1968.

be very useful in other multiple computer systems (as opposed

to multiple CPU systems with common memory). Implementation

of thi interface should be completed by the end of 1968, and

more complete reports on it will be issued later.

PDP-7 System Summary

CPU

8K of 1.75psec core

18 bits/word

hardware interrupt

Teleprinter (33KSR)

10 char per second

Paper Tape Reader

8-channel

300 char per second

Paper Tape Punch

8-channel

63 char per second

Dataphone (201A)

synchronous

2000 bits per second

connected to switched network

CRT Display (Modified 338)

A display consisting of a DEC 338, less the PDP-8 portion

of the 338, is interfaceu to the PDP-7. This is locally

known as a 337 and is the prototype for the DEC 339. The

display operates asynchronously from instruction files in

the PDP-7 memory. It provides point, increment, short

vector, vector, and character plotting modes and is capable

of branches and subroutining as well as conditional branches

depending on the state of user-controlled switches.

-5-

1800 System Summary

CPU (1801C2)

16K of 2ysec core

16 bits/word ♦ parity and storage protection

priority interrupt system (12 levels)

3 index registers
1- and 2-word instruction formats
4 data channels

Keyboard-Printer (1816)

15 chars/sec

Card Read-Punch (1442)

Read 300 cards per minute

Punch 60 cards per minute

Disk (2310A1)

1 drive

movable head

interchangeable cartridges (2315)

512,000 words per cartridge

-6-

2. LOCOSS USER'S MANUAL

2,1 Introduction

LOCOSS resides in the lower part of core, locations

0-4377 octal; all user programs are loaded above it and up to

the loader area, locations 17600-17777 octal. LOCOSS is organ-

ized into four main areas: the multiprogramming monitor, the

Command Language Interpreter, general service, and input/output

routines. Functions within these areas are generally available

as subroutine calls through a system transfer vector and commu-

nication area in low core.

2.1.1 Summary of System Components

Multiprogramming. The multiprogramming in LOCOSS is less

of an attempt to provide a facility for running independent

production jobs than it is an organization of system resources.

On-line systems tend to be rather cumbersome if they must as-

sume all responsibility for the user interaction while trying

to execute complicated programs which are sometimes hopelessly

interdependent. By providing independent lines of execution and

some means of allocating resources, multiprogramming makes

complex tasks easier, at least conceptually. Less complicated

programs may be run as a single task under the monitor, and

the user does not have to worry about the basic system organi-

zation.

The standard method of starting a user program, once it

has been loaded, is to INSERT it into the task queue as an

-7-

8-

independent line of execution from the Command Language Inter-

preter. From then on the program may choose its mode of opera-

tion.

Command Language Interpreter. The Command Language Inter-

preter (CLI) is a part of the teletype keyboard package that

accepts commands in real time from the user and acts upon them.

Since the CLI is essentially an interrupt-time package it can-

not be "locked out" by task time routines, unless these routines

fail to observe the standard system convention of operating with

"interrupts on" (ION). From the CLI, the user can direct such

operations as: starting up new lines of execution (tasks),

dumping or changing core locations, controlling the state of

the IBM 1800-interrupt service routines for the PDP-7, loading

new programs from the disk, and assigning specific devices to the

generalized I/O ports.

General Service Routines. The user-oriented routines pro-

vide services that are required in practically all programs as,

for example, reading and writing octal or decimal numbers, out-

putting text lists, setting an interval timer, etc.

Input and Output. Input/output is interrupt-driven and is

buffered and overlapped as much as possible. Users are ex-

pected to operate their programs with interrupts on and to per-

form all 1/0 (except special display handling) through the

system routines, although there is provision for reassigning

9-

the management for a particular device if the user so desires.

Character buffering for all devices is performed by routines

which are available to the user for specialized application.

The "devices" currently supported (through L0C0SS-3) are:

teletype (keyboard input, teleprinter output), paper tape reader

and punch, 201A dataphone (simulated full duplex), IBM 1800

logical disk file (read and write independently), IBM 1800

copy port (and through it the card reader/punch, console keyboard

and printer, disk files, and running programs in the 1800), and

the 337 as a sink for characters to be displayed on the screen.

Among these, the support routines for the teletype, paper tape

routines, and IBM 1800 disk and copy port routines are resident

in L0C0SS. The dataphone and display routines are available as

independent packages and may be loaded into core, in predesig-

nated areas, by calling system subroutine LOAD, or by loading

the appropriate binary tape.

Device Independence. Most I/O routines have identical

calling sequences so that a large measure of device independence

is possible. Users may write their programs with I/O references

to generalized "sources" and "sinks," and then at run-time assign

specific devices to these "ports" from the CL1. For example, a

program which reads text, justifies and paginates it, and then

writes it onto an output device, could be organized to read

from "S0URC1" and write to "S1NK3." Before the program is

started the user may issue the CLI commands to assign the paper

-10-

tape reader (or the teletype, or a disk file, or the card

reader through the IBM 1800 copy port, etc.), to "SOURCl" and

the paper tape punch (or the teletype, a disk file, etc.) to

"S1NK3." Of course, if a program has a specific task to perform,

the use of device-independent features will not usually be ad-

vantageous. In such a case, the program may call directly on the

specific device desired. Device independence is useful mostly

in general service programs and programs in which a choice of

I/O ports is most conveniently made at run time.

Unfortunately, the attempted device independence is not

complete. Disk files operating as sources or sinks must first be

opened-in or -out before information may be read from or written

into them. Thus, at the time a user assigns the disk to a port,

he should also open the appropriate file through the CL1 commands

for this purpose. After a program has finished using a file it

should be closed, again by the appropriate CLI command. Various

disk errors may also occur (cf.. Section 2.5.2.5), so that a

user who anticipates that a disk file may be assigned to a port

should provide for this possibility by setting up an appropriate

disk error-handling routine.

2.1.2 System Communication Area

The system communication area is a set of locations in low

core through which the user accesses L0C0SS subroutines and

variables. Most of the system subroutines have the address of

their entry points in this area. For example, to punch an

alphabetic character on tape, a program calls the appropriate

\

11-

süb routines indirectly through location 37 (octal), thusly:

"JMS I 37". This 'absolute transfer vector" type of access

to system subroutines insulates user programs from the vaga-

ries of system changes, so that everyone need not change his

program when a minor system change is made.

A symbolic tape (and disk file) define all the communica-

tion area locations as instruction-1 ike mnemonics. Using the

definitions from this tape, then, in the previous example the

user may write only "PCHA" since the tape makes the definition

"PCHA JMS 1 37". Thus by making the LOCOSS symbols the first

tape in an assembly the user may have symbolic access to the

communication area. The tape also contains the symbolic opera-

tion codes for the IBM 1800-PÜP-7 interface. (See the disk and

copy port sections for use.) Xote that this tape should come

before any user tapes In an assembly since it "FIX"es the symbol

table so that none of the I.OCOSS definitions appear in the user's

symbol table printout. A listing of this tape appears in

Appendix A.

In addition to indirect jump and subroutine jump entries

in the communications area, there are also directly referenced

system variables. Some of these variables may be set by the

user to control the action of some subroutines. For example,

the variable LEUING (location 130 octal) contains the ASCII

character which is used to replace leading zeros during the

output of a decimal or octal number. To indicate that

the system routines should output a number with leading

12-

blanks, the user puts an ASCII blank into the indicator location

LAC

DAC

(240)

IEDING

The generalized sources and sinks are also addressed in

this fashion and may be set directly by a user program. The

CLI instructions frr assigning specific devices to the ports

puts an effective JMS into these locations, so that the normal

method of using these ports is via an execute instruction; for

example, XCT SINK2. There are three each of the generalized

sources and sinks.

Other directly addressed locations contain pointers to

information within LOCOSS which may be of possible interest

to the user. For example, RDRLOC contains the location of

the system buffer control block (BCB) for the paper tape reader

If a user wishes to provide a larger reader buffer than is pro-

vided by the system, or wishes to play games with the informa-

tion after it enters the buffer, he may choose to change the

BCB through RÜRL0C.

2.1.3 Operating Procedures

St art-Up. Two procedures are available for loading LOCOSS

If the IBM 1800 is not prepared to service PDP-7 requests, the

system must be loaded entirely from the tape labeled L0C0SS-3

(found in the trays of system tapes). Place it in the reader,

set the AÜDRLSS switches to 17720 octal and press READ-IN. The

13-

tape will proceed to load itself and start automatically. A

halt at location 17756 indicates a checksum error on reading

the tape. An adventuresome user may press CONTINUE to ignore

the error, but the recommended procedure is to start over.

The above sequence will be referred to as "CORE IMAGE LOADING",

or the CIL procedure.

If the IBM 1800 is prepared to service the PDP-7, the

following, faster, sequence may be followed. Place the tape

labeled "LOCOSS BOOTSTRAP" in the reader, set the ADDRESS

switches to 17777 octal and press READ-IN. This short tape

loads LOCOSS from the 2310 disk and starts it automatically.

A halt at location 17642 indicates a checksum error, and may

be ignored by a CONTINUE. A halt at location 17772 indicates

a disk error in the loading procedure, in which case the error

code is in the accumulator.

Loader Area. Both of these methods of loading use non-

l)EC-s t andard loaders and preenpt the normal loader area. If

the user wishes to use the RIM or FF loaders, he must load

them via the normal tape procedures or use the LOCOSS command

"RIM" to load them from the disk. When LOCOSS (or, in fact,

any program) is loaded from the disk, the loader used occupies

locations 17600-17777. Unless this copy of the loader is

destroyed it may be reused directly by any program. The normal

method for loading new programs from the disk is via subroutine

LOAD. If, however, a user program is not LOCOSS-compatible

(and perhaps destroys LOCOSS), it may use the loader in high

14-

core. It should also be noted that copies of the two routines

DSKERR and DISK are included in the loader and may be called

by the user for non-standard uses (e.g., when the LOCOSS

routines are not in core). Details on these procedures may be

obtained from the loader write-up.*

As stated above, the loading procedures for LOCOSS produce

an automatic start. The system may be completely restarted at

location 22 (octal) either manually or by transferring control

from a program. Location 22 contains a CAF (Clear All Flags)

instruction so that all I/O will be aborted, the display stopped,

and the dataphone hung up. Transferring control from a program

to location 23 will restart the system without affecting the

display or dataphone run status.

Core Storage. The resident section of LOCOSS occupies

locations 0-4377 octal, and the loaders occupy locations 17600-

17777 so that the user area is 44C0-17577. If the user wishes

to use the character generator or dataphone routines he must

load them independently into high core.

Since the display requires storage in the lower half of

core for a push-down stack, locations 4370-4377 of LOCOSS are

reserved for this purpose, providing a four-level subroutine

capability before overflowing into the normal user area at

* Brender, R.F., Frantz, D.R., Foy, J.L. Jr., and Schunior,
T.W., Speciali zed System Software for Interacting DEC PDP-7
and IBM 1800, Technical Report 11, Concomp Project, University
of Michigan, Ann Arbor, October 1968.

i
Ml

-15-

4400. Of course, the user may also choose to establish the

push-down area anywhere else in his section of lower core.

Locations 3 and 6 are available to all programs as

volatile, temporary storage locations. Both locations are

saved and restored by the interrupt service program so that

they are available to interrupt-time as well as task-time

routines. In general, any call to a LOCOSS subroutine will

result in the destruction of these locations. Also, any call

to a LOCOSS subroutine will result in the destruction of the

active registers (AC, MQ, and L) except as noted in the specific

calling sequences. Index registers 16 and 17 are reserved for

system use, but registers 10-15 are available to the user.

The user has access to the reader and the punch buffer

control blocks in LOCOSS through locations RDRLOC and PCHLOC

in the communications area. He may change these blocks to

point to a larger area in user core if he so desires, but

before completion, the program should restore these blocks

to their former state, either directly or by reloading LOCOSS.

In summary, while operating under LOCOSS the locations

that the user's program may reference are: 3,5,10-15, the

communications area (about 24 to 130), the reader and punch

buffer control blocks, 4370-17577, and selected portions of

the loaders.

-16-

Run-Timc Conventions. Since most I/O is performed under

interrupt control, noimal operation is with interrupts on, al-

though inte-rupts may be turned off for short periods to per-

form delicate operations. The interrupts normally handled by

the resident system are keyboard, teleprinter, reader, punch,

and clock. When the dataphone routines are in core and initia-

lized, the system will handle dataphone transmit and receive

interrupts. When the display character routines are in core,

they will handle the external stop and manual interrupts. All

other interrupts will cause a halt. Thus the user should ensure

that the handler for each interrupt that may occur is in core

and initialized through subroutine 1NTABL.

Users should acquaint themselves with the philosophy of

multiprogramming and then consider the use of BUSY exit in the

middle of very long tasks or in the case of blocking conditions.

A BUSY enables the appearance of parallel processing, allows

other tasks to gain control for a time, and avoids "lock-outs"

of CPU control. The normal method of ending a program

is via a "DELETE" exit, rather than a halt. This allows

all buffered I/O to terminate normally.

Error Messages. Error messages report on intolerable

conditions within the executive. When one of these con-

ditions is detected, all task processing is halted, a CAP

instruction is given, the error number is printed, preceded

by the letters "öERR," and LOCOSS is completely reinitialized.

000001 There was no room in the task queue when some

program called INSERT, SUBTSK, BUSY, or WAIT.

000002 There was no room in the event table when some

program called CREATE.

000003 A disk error occurred on a call to DISK, DSKGET, or

ÜSKPUT when no previous call or ÜSKERR had been

made. Location 20 (octal) contains the error

number.

000004 There was no room in the clock table when some

program called CLOCK.

2XXXXX A CAL trap occurred from location XXXXX.

Operating parameters. In the current system there is

room for ten decimal tasks, eight events, and four simulated

user clocks. The reader and punch buffers are both of size

ten and may be "packed." The teleprinter buffer has size

fifteen and may be packed. The keyboard buffer will accept

seventy-four characters.

I
-17-

If the same error is encountered twice in succession, the com-

puter will halt with the error number in the AC. (This

feature protects against looping before an error message may

be printed.) Pressing CONTINUE in this case produces the same

effect as starting at location 22. The following is a list of

the error numbers.

18-

2.2 Multiprogramming

2.2.1 Basic Philosophy

Multiprogramming is an organization of system resources

which aids in the conceptualization of some programs by enabling

the '-ier to start more than one job or line of execution at a

time. The LOCOSS multiprogramming system also includes features

to facilitate intra-program communication and resource allocation

All of LOCOSS I/O uses the multiprogramming system to great ad-

vantage, although the user may run programs under LOCOSS in

almost complete ignorance of the system organization. The

following is a summary of system philosophy and a tutorial in

system use.

In general, a section of code, a subroutine, will be called

a program. It usually operates on some parameters to produce

a desired result. An invocation, or instance, of a program,

with parameters, is called a task . In a multiprogramming en-

vironment, several tasks may be operating in parallel; i.e.,

if there were more than one processor, these tasks would be

executing simultaneously. With one processor these tasks are

executed serially, but at certain points control is switched

between one task and another so that each gets a portion of

the serial time, and the total state of the system after many

such task-switchings approximates the parallel processor case.

In timesharing systems, this switching takes place after a

given amount of time. In LOCOSS, the switching takes place only

when (but not always when) control is returned to the executive

19- !

(e.g., I/O calls, event control calls, etc.).

In general, once a section of code starts execution as a

task, it will change itself and the data it is working on so

that it must proceed to its conclusion completely before being

able to be restarted as another task. Since several tasks may

wish to call the same program at once, that program must have

some way of indicating its readiness to start functioning as a

task. Taking advantage of the subroutine calling structure of

the PDP-7 we will let the entry point of a program signal the

attribute of enterabi 1 ity. If the program is ready to begin

executing as a task, its entry point will be zero. If it is

not able to start executing as a new task, its entry point

will be nonzero. Since a call to a subroutine automatically

makes the entry point non-zero, all that is required for a pro-

gram at the end of one execution of a task to indicate its

readiness to begin another task is to zero its entry point

before returning. For example, a task which returns to its

caller might appear as:

SUB, 0
/first executable instruction

LAC SUB
DAC TEMP
DZM SUB
JMP I TEMP

/save return pointer
/ready to restart
/return to caller

A task may start up other tasks in two ways. The first

is by starting a parallel line of execution by calling system

subroutine INSERT. After having been started, the second

-20-

task will not in general depend on or be related to the first,

or vice-versa. They may be completely independent. As an

option for INSERTing tasks which are known always to be re-

enterable, the call to INSERT may indicate that control is to

be transferred directly to the indicated entry point rather

than transferring control as a subroutine call; i.e., entry will

be via JMP rather than JMS, and enterability will not be checked

The second method of starting a task is to call on it as

a subtask by calling system subroutine SUBTSK. A program called

as a subtask is expected to accomplish some action and then

return to its caller. The calling task remains dormant until

its subtask finishes, and then regains control upon return from

the subtask. A su^task in turn is a task and may start other

tasks, and so forth.

When a request is given to the system to start a task,

there are usually other similar outstanding requests. These

requests are kept in the TASK QUEUE until such time as these

tasks may be started. A task is added to the end of the queue

so that all other outstanding tasks are started first (if they

are enterable). This feature allows the semblance of parallel

processing. Eventually a request comes to the top of the queue

for consideration. If a program is not enterable, the request

goes to the end of the queue to be tried again later. When a

program is enterable, the information regarding its call is

removed from the queue and the call is made as if it came direct-

ly from the calling task, or, in the case of an INSERTed task,

as if it were starting anew.

I
-21

When a task teaches a temporary impasse, such as a wait

for input or a similar occurrence over which it has little con-

trol, it should take a BUSY exit, i.e., it should return to

the executive and give some other task a chance to execute

while the blocking condition clears up. The executive will put

information regarding the busy task at the end of the queue

and return to that task after the others in the queue have had

their chance to execute. The task can then check the condition

and either go on or return itself to the queue again by another

BUSY exit.

When an independent line of execution (i.e., one which is

not a subtask, but was started by an INSERT) finishes, it need

not return to a calling task but may rather return control to

the executive by a DELETE exit. A task which was INSERTed as

a JMS entry may also return in the normal way. Both methods of

return have the same effect—removing the task from the active

roll. The task should of course zero its entry poi t before

the exit. Note that if a program returns as if it were called

via JMS, first zeroing its entry point (as in the example above),

it may be called as a subroutine or a subtask, or inserted as

an independent task.

2.2.2 Event Contro1

In a multiprogramming system with independent lines of

execution there sometimes exists the problem of coordinating

parallel tasks. Two otherwise essentially independent tasks

-22-

\

may need to signal each other that certain points in operation

have been reached, since one may have to wait until the other

has finished some processing. In particular, it would be dif-

ficult to ensure that the passing of parameters to an indepen-

dent, INSERTed task had taken place properly if there were no

task-task means of communication.

Events are offered to resolve this problem. Events are

extra-task entities which a task may CREATE for some purpose as

above. Each created event has a unique name (a number) which

may be given to other tasks for reference. The task may then

take a WAIT exit, that is, return itself to the queue until the

given event has occurred. This task in the queue is not re-

activated until the event has occurred. One of the daughter

tasks, in the meantime, has the responsibility of giving the

SIGNAL that the event has been completed. After this, the

next time the waiting task comes up for consideration in the

queue, it will be reactivated and can continue safe in the as-

surance that the blessed event is properly cared for.

In view of the foregoing discussion, we may make the

following general comments about system operation. Most user

programs will be written as at least one task. Thus, a stan-

dard method of starting a program when LOCOSS is in core is:

first load the user program tape and start execution at loca-

tion 2? (either by a START 22 on the program tape or by a

PAUSE on the tape followed by manually pressing the START key

with the ADDRESS switches at 22). Either way, starting at 22

-23-

initializes LOCOSS. Then type "(ESC) INS XXXXX" which is the

CLI command to insert a task into the queue at location XXXXX,

the entry point of the user's task. Recall that this entry

point should be zero for the task to be started. If entry is

to be made via JMP, the proper command is "(ESC)INS 4XXXXX".

If the user task does any I/O, it should be recalled that,

with high probability, some output buffer will eventually fill

or some input buffer will be empty. If either of these condi-

tions occurs, the I/O task segment will take a BUSY exit.

That is to say, every other task in the queue will be given a

chance to execute before control is returned to the BUSYed

task. If there is only one task in existence, there is no

problem. However, when there is more than one line of control,

care should be taken that any I/O referencing is coordinated

among them so that two tasks will not be calling an I/O sub-

routine at the same time with an undesired interleaving of

the transferred information and loss of correct return points

from the I/O program.

2.2.3 Subroutine Calls

SUBTSK

Purpose: To put a task into the queue and to relinquish

control of the current task until the subtask

is fini shed.

Calling Sequence: AC = argument

SUBTSK

-24-

Calling Sequence (cont'd):

ROUTIN

RETURN,

/optional arguments

ROUTIN is the address of the task to

started

RETURN is the location to which control

is transferred when the task at

ROUTIN is finished.

Optional arguments are to be consistent with the called

task's expectations. When ROUTIN is given control the AC is

the same as upon the call, although the MQ register may have

been destroyed. The entry point ROUTIN itself contains the

address of the word after ROUTIN in the calling sequence above,

as if the call were a direct JMS from the location containing

ROUTIN, so that the return sequence in the first example in

Multiprogramming (above) may be used. Upon entry to SUBTSK

interrupts may be on or off.

INSERT

Purpose: To insert an independent task into the queue

Calling Sequence: I0F

AC = argument

INSERT

ROUTIN

RETURN, ION

/ or LAW ROUTIN or 400000+
ROUTIN (See option below.)

-25

ROUTIN is the entry point of the task to be started. If

"LAW RUUTIN" is used in the call, entry is made via JMP rather

than JMS. RETURN is the point to which control is returned

immediately after the task is entered into the queue. When

task ROUTIN is given control, the AC is the same as upon the

call although the MQ may have been destroyed. In a JMS call,

location ROUTIN itself is set nonzero to indicate that the

task is not enterable. Such independent tasks may relinquish

control by DELETE or by returning as in SUBTSK. Both methods

return control to the same location in the Multiprogramming

monitor. A task entered via JMS should zero its entry point

before either method of return.

BUSY

Purjose: To return the currently executing task to the

queue to be reactivated later.

Calling Sequence: AC = any

BUSY

RETURN,

Control is returned to location RETURN when the task next

comes under consideration in the queue. The AC is saved and

restored around the call to BUSY by the system. Interrupts

may be on or off upon entry. Return is made with interrupts

on.

-26-

DELETE

Purpose: To return control to executive when an indepen-

dent line of execution is finished.

Calling Sequence: DELETE

Interrupts may be on or off upon entry.

CREATE

Purpose: To obtain a unique event number for reference

use .

Calling Sequence: IOF

CREATE

RETURN,

When control is returned to location RETURN the AC contains

a unique event number for reference in WAIT or SIGNAL calls.

WAIT

Purpose: To return the currently executing task to the

queue until a given event occurs.

Calling Sequence: AC = event number

WAIT

RETURN,

/ION or IOF

/with ION

After the event corresponding to the reference number in

the AC occurs, a transfer to location RETURN is scheduled in

the task queue. If the event has already occurred or if there

is no event corresponding to the reference number, return is

i mmedi ate.

I

-27- !

SIGNAL

Purpose: To indicate that a given event has occurred.

Calling Sequence: AC = event number /10F

SIGNAL

RETURN, /ION

The event corresponding to the reference number is marked

as having occurred and all tasks waiting for the event will be

reactivated as their turn comes in the queue. No action occurs

if the event has already taken place or if the event referenced

is nonexistent.

CLEARE

Purpose: To reinitialize all events and event handling

Calling Sequence: 10F

CLEARE

RETURN,

The next event to be created will have number one (1).

CLEARQ

Purpose: To clear the task queue of all outstanding tasks

Calling Sequence: 10F

CLEARQ

RETURN,

After execution of CLEARQ the only line of execution

(the active task) will be the one which called CLEARQ.

28-

2.3 Command Language interpreter

The Command Language Interpreter (CLI) is a portion of

the LOCOSS keyboard routines which provides the user with a

measure of control over the immediate, real-time state of the

system. Since the CLI is an interrupt -1ime package, a command

line may be entered at any time, independently of the state of

the user program.

A command line is a keyboard input line which has as its

first character an ESC (Control-Shift K). Thus the line is

subject to the same editing as other keyboard input. Once an

HSC is typed at the beginning of a line it may not be deleted

by LEFTARRÜW; thus, the line will be dispatched to the CLI

unless RUBOUT is typed. When the carriage return is entered,

finishing the command, a'. 1 task processing is stopped until

the command has been carried out successfully, at which time

the CLI types "DONE." If any key is struck before this time

the command is aborted. If a command is ill-formed, the CLI

will type back "WHAT?" and ignore it. When echoing is on

(see Section 2.5.2.4) an "•" is echoed when ESC is typed.

There are three groups of commands: general control,

disk file control, and device assignment. The format for

device assignment commands is given separately below. For

the first two groups, a command is a three-letter mnemonic,

possibly followed by numeric parameters separated by non-

digit character strings (e.g., space), optionally followed

by any character string (for comment recording purposes).

-29-

Numbers given to the CLI are octal or decimal depending on the

command type. Only the eighteen low-order bits of any number

are used. After the first three characters of an input line,

all nondigit characters are ignored except as terminators of

numbers .

2.3.1 General Commands

ATN

ATN sends an attention character over the dataphone (if

it can), by calling subroutine DFNATN. The CLI message "DONE"

printed at the command termination means merely that the

transmission has been scheduled, not necessarily that it has

been started or completed.

DDT

DDT causes control to be transferred to location 16000

(octal). Control may be returned to the program and LOCOSS

by transferring control from DDT to location 2, i.e., by

typing "two prime" (2'). DDT should be told to watch the

teleprinter flag by giving it the TTY$ and ST10C$ command and

by setting the variable TTYF$ to 1.

DAT

DAT initializes the hardware and software for dataphone

communications; that is, it sets "terminal ready" on the data

set and initializes the dataphone routines by calling DFNI.

This command must be given before incoming or outgoing calls

are made on the data set and may be repeated thereafter to clear

up any bad messes without hanging up the set.

•

30

DMP

DMP takes one or two octal arguments. If there are two

arguments, all the core locations between and including the

two locations given by the arguments are printed on the tele-

type, in octal, eight words per line, with appropriate labeling.

If only one argument is given, only that one location is dumped.

For example, DMP 10 17 will dump all locations between and

including 10 and 17 (octal).

BCF

ECF causes echoing to be turned off.

HCN

ECN causes echoing to be turned on. (See the discussion

under the keyboard routines.) The original state of the system

is with echoing on.

MEL

HEL merely types back this version's assembly data to as-

sure an anxious user that the CLI, at least, is still listen-

ing to him.

HSR

HSR starts the high-speed tape reader after it has been

stopped by an XOFF or end-of-tape condition, or if it has never

been started. This command should not be given if none of these

conditions exist. (See the high-speed reader routines.)

|

-si-

'S

INS

INS takes one or two octal arguments. The first is the

address of a task to be entered into the task queue, and the

second, if any, is tht argument to be passed in the AC to the

task when it is scheduled. If there is no second argument, a

zero is passed to the task, e.g., INS 4400 15.

RES

RES resumes task processing at the point at which it was

interrupted by STP. If no STP was given since the last RES,

a second RES has no effect.

RST

RST completely restores the pristine state of the system

(probably). (See system routine RESET.)

STO

STO takes two or more octal arguments The first is con-

sidered as a location in which to store the second argument.

Additional arguments are stored in successive locations. For

example, STO 4500 12 3 has the effect of putting a 1 into

location 4500, a 2 into 4501, and a 3 into 4502.

STP

STP stops all task processing until the RES command is

given. The CL1 is still available during task suspension

(most importantly for DMP and STO). A second STP before an

RES is treated as an illegal command.

32

TAB

AB takes one decimal argument and uses it to set the

syyt"" variable TABCNT; that is, it sets the tab spacing.

I'. G. , TAB 15 will set tab stops at decimal lb, 51, 46,...

J.5.2 Disk File Control Commands

The ."ollowing commands provide direct communication with,

and lOntro.,. of, the disk file servicing routine in the IBM

1800 through the system subroutine DISK.*

With the exception of LOD and RIM, they all print the

return from the disk routines indicating success or failure,

and in case of failure even LOD and RIM print the failure

number. A success return is indicated by printing 000xxx

(octal) where xxx is the returned value. A failure return

is indicated by 006xxx where xxx is the disk error code.

A CLI call on DISK should not be issued if a program is

in the midst of conversing with the disk, since no effort

has been mr.de to make the routines reentrant. A CLI call will

not disturb the user disk error return.

CLI

Close the currently opened input file.

Brender, R.F., Frantz, D.R., Foy, J.L. Jr., and Schunior,
T.W. , Speci al i zed System Software for Interacting DEC
PDP-7 and IBM 1800, Technical Report 11, Concomp Project,
University of Michigan, Ann Arbor, October 1968.

33-

CLO

CLR

Close the currently opened output file

Close any opened input or output files. 1
CRE

CRE takes one decimal argument and creates a file with

that number.

DES

DES takes one decimal argument and destroys the file with

that number. No verification of the number is sought so this

command should be used carefully.

INT

INT takes one or two octal arguments and uses them as

parameters for a direct call on the system subroutine DISK.

The first argument is the disk operation code and the second

is a file number or character. The second argument need not

be present if not applicable (e.g., in a CLOSE call) and is

defaulted to zero.

LOD

LOD takes one decimal argument and uses it as the para-

meter for a call on system subroutine LOAD; i.e., the ad-

dressed file is loaded into core. If a disk error occurs

during loading, the disk error number is printed out and the

loading is aborted.

34-

PIT

OIT takes one decimal argument and opens that file for

input, translated.

OIU

OIU takes one decimal argument and opens that file for

input, untranslated.

OPT

PPT takes one decimal argument and opens that file for

output, translated.

PPU

PPU takes one decimal argument and opens that file for

output, untranslated.

RIM

RIM loads the READ-IN-MPDE and FUNNY FPRMAT loaders into

their proper positions in core (17600-17777) from File 5.

This file is in bootstrap format and cannot be loaded by a

LPD command.

2,3.3 Device Assignment Commands

The device assignment commands provide the link between

a program's references to generalized SPURCEs and SINKs and

the actual devices used in a particular "run" of a program

(see Section 2.1). For example, the assembler is written

to accept input from SPURC1, and the user directs the CLI to

-35

assign either the teletype, the tape reader, the IBM copy port,

or a disk file to S0URC1 before the assembler starts.

The form of the device assignment command is:

<DEV1CE ASSIGNMENT COMMAND>:: = <DEVICE> <PORT>|<DEVICE> <MODE>

<PORT>

<DEVICE>:: = TTY|TAP | DSK|ICY]DFN|DSP|DMY

<MODE>:: = BIN|ALP

<P0RT>:: = SC1 | SC2 | SC3|SKI|SK2|SK3

If no mode is given, ALP (alphanumeric) is the default

case. Thus, the user may assign the appropriate input or out-

put routine for the teletypewriter, paper tape, disk, IBM copy

port, dataphone, display, or dummy routine, in binary or al-

phanumeric mode, to one of the system transfer vector locations

S0URC1, S0URC2, S0URC3, SINK1, SIN^or S1NK3. Any illegal

assignments or improper syntax will be greeted with "WHAT?"

and the command will be ignored.

The following table gives the legal assignments for devices

Blank entries indicate illegal assignments, i.e., nonsensical

or not-yet- coded system functions. The other entries are the

LOCOSS-defined assembly instructions which are inserted into

the source or sink location For example, issuing the command

"(ESC)TTY SKI" is equivalent to executing the code:

LAC

DAC

(TPRA)

SINK1

-36-

A user's program may determine whether a specified device

has been assigned to a particular port by executing an SAD

instruction, thusly:

LAC SÜURC1 /get S0URC1

SAH (RDRA) /compare to RDRA

/S0URC1 = RDRA

/S0URC1 i RDRA

-37-

Table 1

Device Assignment Table

| ALPHANUMERIC PORTS I BINARY PORTS
DEVICE j Source Sink Source Sink

TTY TPRA KBDA

TAP RDRA PCHA RDRB PCHB

DSK DSKGET DSKPUT

ISY ICYRDT ICYWRT

DFN DFNRA DFNSA

DSP JMS 17006

DMY DUMMY DUMMY | DUMMY DUMMY

i
2 4 General Service Routines

RliSHT

Purpose: To reinitialize the whole svjtem.

Calling Sequence: RESET /ION or 10F

RETURN, /ION

All 1/0 is aborted, and device handlers for the keyboard,

teleprinter, reader, punch, clock, disk IBM 1800 copy port^and

dataphone are initialized by the system routines. The task

queue is emptied and event handling is reinitialized. The

system variables are reset to provide echoing and prompting

characters for keyboard input, i.e., ECHOSW = PRMPTC = 0.

The tab count is set to ten (decimal) and LEDTNr, is set to

an ASCII zero (octal 260). Location 1 is reset so that

LOCOSS provides all interrupt dispatching.

CLOCK

Purpose: To enable a timed return to a section of the

user's program.

Calling Sequence: I0F

AC = -N /twos complement form

CLOCK

JMS CLKINT /to be XCT'ed

RETURN, ION /AC contains address of
simulated clock

I

-39-

After N/60s of a second, a clock interrupt will occur and

control will be transferred to the user subroutine CLKINT with

interrupts off. This subroutine will be operating at interrupt

time so that it must do all its processing with interrupts off

and return to the interrupt dispatcher as soon as possible.

Thus, all it can do is set some flags for the user, INSERT a

task, or set another clock. Up to four simulated clocks can

be set at any one time.

The address returned in the accumulator by CLOCK is the

address of the simulated clock. This location contains the

twos complement of the number of l/60s of a second before the

clock runs out. This number may be changed at any time before

the clock is set to go off, and in particular it may be set to

zero, which will disable the simulated clock should the program

decide that the interrupt is no longer needed. When the inter-

rupt-time routine is called, the simulated clock has gone to

zero so that it is no longer active. If the interrupt-time

routine decides to reset a clock, it may reset the timer which

called it rather than make a new call on CLOCK. Warning: once

a clock has been set to zero by the user> as above, or has been

allowed to remain at zero after it has run out, the address

given to that clock should no longer be used since it may be

assigned to another program.

Example: The code below will result in the character "A"

being typed once per second.

40

[OF
LAM -74*1
CLOCK
JMS CLKINT
DAC CLKLOC
DELETE

/=-60 Decimal

/c lock handler
/address of clock
/return to LOCOSS

CLKLOC, JJ

CLKINT,

TYPE,

0
LAM
DAC I
INSERT
TYPE
EXIT

-74*1
CLKLOC

CLKINT

$
LAC (301)
TPRA
DZM TYPE
DELETE

/reset clock for another second
/insert the type task

/return to real clock interrupt

/handler

/task entry point
/ASCII "A"
/type i t
/make reenterable
/return to LOCOSS

INTABL

Purpose: To change the interrupt handler for a given

im irrupt.

Calling Sequence: LAW INTNO

INTABL

JMS HANDLR

RETURN,

HANDLR is the entry to the real-time, interrupts-off

subroutine which will clear the associated flag, do the ne-

cessary processing, and return to the executive interrupt

dispatcher. INTNO is the number of the interrupt as given in

the following table. The numbers below are octal.

V;

-41-

Interrupt Number

1
2
3
4

5
6
7

10

11
12
13
14

15
17

Device

Dataphone Transmit
Light Pen
Vertical Edge Flag
Horizontal Edge Flag

Internal Stop
External Stop
Dataphone Receive
Manual Interrupt

Push Button Hit
Tape Reader
Tape Punch
Keyboard

Te leprinter
Clock

LOAD

Purpose: To load a file from the 1800 disk and start

it executing, or return to the user, depending

on the contents of the file.

Calling Sequence: AC = file number

LOAD

ERROR RETURN

SUCCESS RETURN

/ION or IOF

/ION

/ION

The PDP-7 support routine must be initialized in 1800

core for this command to have any effect. All input files

should be closed before calling LOAD.

If the loading procedure produces an error of some sort

(e.g., 1800 dead, snarked bootstrap specification, or no such

file) control will be passed to the error return with the AC

containing the disk error number.

42-

The file addressed is assumed to be in core image format

with a START or PAUSE control block at the end of the file.*

If thu biock is PAUSE, control will be returned to the success

return with interrupts on. If the block i.- START, control will

be passed to the location addressed in the START block with

interrupts off.

RDOCT

Purpose: To read and translate a stream of ASCII characters

into a twos complement, signed octal number.

Calling Sequence: RDOCT

JMS INPUT

ERRET,

NRMRET,

INPUT is the entry point to a routine which provides a

stream of ASCII character^. For example, this call may be "KRDA,"

which is an effective JMS. All the characters read from the

source stream up to the first octal digit or minus sign are

ignored. v minus sign starts a number and may not be separated

from the first digit by any other character. If no octal digits

or a minus sign are read before a carriage return, control is

returned f"» location ERRET. When a number is terminated (by

a non-octal digit), control is returned to location NRMRET with

Brendcr, R.F., Frartz, D.R., Foy, J.L. Jr., and Schunior,
T.W. , Specia1i zed System Software for Interact ing DEC
P1) P - 7 and IBM 1800, Technical Report 11, Concomp Project,
University of Michigan, Ann Arbor, October I9b8.

43-

the octal integer in the AC and system variable TRMCHR con-

taining the terminating character. Only the low-order eighteen

bits of any number are kept. Note also that for signed quanti-

ties to have significance the magnitudes of the numbers must be

less than 217-1 (= 13107110 = 377777g).

Only one of RDOCT and RDDEC should be executing at the

same time since they use common intermediate routines.

RDDEC

Purpose: To read and translate a stream of ASCII char-

acters into a decimal number.

Calling Sequence: RDDEC

JMS INPUT

ERRET,

NRMRET,

The action for RDDEC is the same as for RDOCT except that

all numbers are decimal.

Only one of RDOCT and RDDEC should be executing at the

same time since they use common intermediate routines.

PROCT

Purpose: To translate the contents of the AC into a

stream of six octal ASCII characters, unsigned

Calling Sequence: AC = Number

PROCT

JMS OUTPUT

RETURN,

-44-

OUTPUT is a routine which will accept the stream of ASCII

characters produced, for example, TPRA. The number is treated

as unsigned. Leading zeros in the output stream are replaced

by the contents of system variable LEDING. LOCOSS initialization

sets LEDING to 260 octal, an ASCII zero. Thus LEDING = 240

would produce leading blanks, and LEDING = 0 would produce

ASCII NULLs (which are ignored by the teleprinter routines).

Only one of PROCT and PRDEC should be executing at the

same time since they use common intermediate routines.

PRDEC

Purpose: To translate the contents of the AC into a

stream of six decimal ASCII characters, unsigned

Calling Sequence: AC = Number

PRDEC

JMS OUTPUT

The action for PRDEC is the same as for PROCT except that

the number converted is decimal.

Only one of PROCT and PRDEC should be executing at the same

time since they use common intermediate routines.

45

2.5 Input/Output

2.5.1 Introduction

LOCOSS T/0 is buffered and overlapped as much as

possible and is done under interrupt control, i.e.,

asynchronously with the user's program. Thus when the

user calls an output routine and the routine returns, the

program can consider the operation to be completed and

continue with something else, even though the operation

will not be completed for some time. On input, the tape

reader and dataphone are overlapped and will read ahead

if the user is slow in taking information from the buffers.

Calling the keyboard for input results in an initial

wait until an entire line has been entered, but parallel

lines of execution can be executing while the task awaiting

input is BUSY'ed. The only devices not handled under

interrupt control are the character generator display

routines and the IBM 1800-PDP7 interface routines which

handle I/O on a demand basis (ScLtions 2.5.2.7 and 2.5.2.8).

Recall that on input operations a buffer may be

empty (i.e., no input is available) and that on output, the

buffer may be full. Control is not returned to the user

when his line of execution encounters one of these

blocking conditions until the block is removed and the

transfer can be made. For example, a call for input from

the high-speed reader will not return until the reader

has been started and a character read.

Almost all I/O routines have standard calling sequences.

-46-

Input is requested by merely calling the associated routine.

Upon return the AC contains the input item. Where meaning-

ful, there may be alphanumeric and binary reads from the

same device (e.g., the high-speed reader). Output is

performed by loading the AC with the item and callin, the

desired routine. Upon return, the operation may be assumed

to be completed. Again, there may be binary and alphanumeric

writes. For alphanumeric write commands, either one or two

characters may be passed to the device at the same time. To

achieve this, the low-order 16 bits of the AC are considered

as two eight-bit bytes with the high-order byte considered

first. If the high-order eight bits are zero, they are

ignored (not passed on to the device). The low-order

byte is always passed to the device, regardless of its

zeroness. For example, the following sequences produce

i dent ical results:

LAC (301) LAC (140702)
TPRA TPRA
LAC (302)
TPRA

That is, they both result in the letters "AB" being typed.

The double character transfer is much more efficient in

terms of time.

Note: all devices using ASCII code expect DEC-style

ASCII, i.e., the high-order or 200 bit is always set.

Each device has an associated initialization routine

which restores the device status and buffers to their origi-

nal state and assigns the standard system routines to ser-

vice the device. All initialization routines must be called

-47-

with interrupts off. All other 1/0 routines may be called

with interrupts off or on but always return with interrupts

on. Exceptions to this are noted in the routine descriptions

If the user wishes to handle the 1/0 for a given device

himself, he may do so by first calling routine

1NTABL with appropriate parameters. 1NTABL should also be

called if any display interrupts are expected. The user

is expected to provide a routine for each display interrupt

he enables. Since the keyboard and teleprinter routines

are highly interactive, both must be changed if one is

changed. This condition also applies to the clock and

reader routines.

2.5.2 Device Descriptions

2.5.2.1 Paper Tape Punch

The paper tape punch is the simplest of all of the 1/0

devices since there are no control characters or special

cases to worry about. The only special circumstance that

can arise is the out-of-tape condition, and, since this

cannot be sensed from the PDP-7, the user must ensure that

there is enough tape in the feed box before his program

s tarts punching.

Alphanumeric and binary calls to the punch routines may

be interspersed from the user's line of control by merely

calling the associated routines.

System variable PCHLOC contains the address of the

system buffer control block for the punch. By changing

the BCB the knowledgeable user may provide a different.

48

larger buffer, or may play any other tricks he likes.

PC1IA

PCHI

Purpose: To initialize the device-handling routine

for the punch to be the standard routine

and to clear the punch output buffer.

Calling Sequence: I0F

PCHI

RETURN, /IOF

Purpose: To punch the one or two ASCII characters in

the accumulator in alphanumeric mode.

Calling Sequence: AC = one or two characters.

PCHA

RETURN, /ION

Purpose: To punch the contents of the accumulator in

binary mode, i.e., such that a RDRB call

would return with the same word.

Calling Sequence: AC = 18-bit word.

PCHB

RETURN, /ION

See the POP-7 User's Handbook (pp. 76-77) for the tape

format of a binary word.

PCHB

49- I
2.5.2.2 Paper Tape Reader

The high-speed paper tape reader on the PDP-7 is some-

what unique among devices of this sort in that there is

no way to sense directly the physical end of tape. To

remedy this situation, the reader routines recognize

the ASCII XOFF character (023) as the physical end of tape

and will halt the tape reader when this character is read.

This convention eliminates some of the difficulties en-

countered in reading spurious characters caused by the

skewed end of a tape and thus helps to protect the user.

If, however, there is no XOFF near the end of the tape, the

tape will run out. By means of a timer arrangement with one

of the simulated clocks, this condition will be recognized.

When it is, the reader routines will insert an XOFF into

the buffer for the user's information and stop the reader.

Stopping the reader (i.e., clearing the reader select) thus

allows the user to insert a new tape without fear of the

tape's running away before it is seated properly. The

user thai indicates that the new tape is ready by the

message to the Command Language Interpreter: "(ESC)HSR".

Of course, the character (023) may be legitimate data

and not a device control character. If the user program can

detect this condition, it may call subroutine RDRSEL which

restarts the reader. A user sitting at the keyboard can

also detect this condition and restart the reader via

"(ESC)HSR." Since the XOFF is transferred to the user program,

-50

no data are lost. System variable RbR-LOC contains the address

of the system buffer control block for the reader.

RDRI

Purpose: To initialize the device-hand 1ing for the

reader to be the standard routine and to

clear the current contents of the reader

buffer.

Calling Sequence: I0F

RDRI

RETURN, /I0F

RDRA

Purpose: To return in the "ow-order bits of the AC

the next eight-bit alphanumeric character

from the reader buffer.

Calling Sequence: RDRA

RETURN, /AC = 8-bit character; ION

Purpose: To return in the AC the next binary word

from the reader buffer.

Calling Sequence: RDRB

RETURN, /ION

See the PDP- 7 'Uer's Handbook (pp. 76-77) for the tape

format of a binary word. The end-of-tape character (023)

will cause the reader to itop in binary mode also.

RDRB

51

RDRSEL

Purpose: To start the high-speed paper tape reader.

Calling Sequence: I0F

RDRSEL

RETURN, /with 10F

RDRSEL issues the actual hardware select instructions

to set the reader in motion and sets a timer so that if

there is no tape in the reader, the device routines can

insert an XOFF into the buffer and clear the select. The

CLI command "HSR" calls RDRSEL. The user should not call

RDRSEL from either his program or the CLI unless the reader

has not been started since the beginning of a program or an

XOFF has been encountered (either on the tape or as the

result of a time-out).

2.5.2.3 Teleprinter

The teleprinter and associated routines provide a

character-oriented output device with some formatting.

The system variable "TABCNT," accessed directly in the

system communication area, defines equi-sized tab stops

on the teleprinter. Since the KSR-33 does not have a

real tab mechanism, the tabs are simulated from the output

routines by outputting the appropriate number of spaces

to position the carriage at the next "stop." TABCNT

is defined on the LOCOSS symbol definition tape and may

be accessed directly by the user. For example.

52-

LAC (12) /Octal Radix
DAC TABCNT

will effect "»tops" at carriage positions 10, 20, 50,...

(decimal). A value of zero will be defaulted to a value of

one. TABCNT may also be sei by the CLI command TAB

(see 2.3 Command Language Interpreter). Other editing of

the output stream is given below.

Since the teleprinter is a common output device for

program communication, the situation often arises that

two tasks may wish to print a message at the same time.

Since the output routines are character-oriented and may

be called directly by any task, the result may be unin-

telligible interleaving of character information from the

two tasks. To avoid this difficulty, the user may write

his programs to employ the programming convention of

"seizing" the use of the teleprinter at the beginning of a

print line, and "releasing" it at the last character of

the line, the carriage return. Then, during the period

that the teleprinter Is being used by one task (i.e.,

while it is "seized"), another task may not seize it, so that

a whole line is printed without interference. After the

teleprinter has been released, any task may then seize

it and print its line of information.

1

-53-

This convention Is Implemented in LOCOSS by means of

the system routine SEZTPR. Thus, whenever a user wishes to

start a teleprinter line, he calls SEZTPR as a subtask.

Upon return from SEZTPR, the user may print the line with-

out fear of interference; tnat is, he may make successive

calls on TPRA until he prints a carriage return.

Calling TPRA with a carriage return as the low-order byte

in the AC automatically releases the teleprinter so that

another task may seite it.

Of course, if a user does not expect to be printing

from independent tasks he need not bother calling SEZTPR

at the beginning of a line, since no other task will have

seized the teleprinter and be in the process of printing.

TPRI

Purpose: To initialize the device-handling routine

for the teleprinter to be standard routine,

to clear the contents of all print buffers,

and to release the teleprinter If it has

been seized.

Calling Sequence: IOF

TPRI

RETURN, /IOF

TPRA

Purpose: To print the one or two ASCII characters in

the AC.

54-

Calling Sequence: AC ■ One or two ASCII characters.

TPRA

RETURN, /ION

The following translations of the ASCII character set

are made in the stream of output characters:

1) Carriage return (215) is mapped into a carriage

return and line feed (212). (Note that (01S) Is

typed alone as only a carriage return.)

2) Line feed (112) is not printed. (Note, however,

that (012) will print as a line feed.)

3) Zero characters are not printed, i.e., they are

ignored.

4) The tab character (211) generates enough spaces

to move the carriage to the next tab stop, i.e.,

next multiple of TABCNT.

A carriage return in the low-order byte of the accumula-

tor will "release" the teleprinter (see SEZTPR).

SEZTPR

Purpose: To seize the use of the teleprinter routines

for the duration of a print line.

Calling Sequence: SUBTSK /I0F or ION

SEZTPR

RETURN, /ION, with AC
restored

SS-

If the telepnnte. routines have been seized and not

released by another task, control will not be returned

to the calling task until the release is given Thus when

control is transferred to location RETURN, the teleprinter

routines may be called without fear of interference. The

accumulator is saved and restored around the call to SEZTFR.

A call to TRPA with a carriage return in the low-order

b/te of the accumulator will release the teleprinter. If

a**}' task expects to use the seize-release convention, all

tasks using the teleprinter should do so.

2.S.2.4 Keyboard

The teletype keyboard is treated as a line-oriented

input device. That is, a call for input is essentially

a call for the input of an entire line—a string of charac-

ters ended by a carriage return. The keyboard routines

will collect the line and, upon rr eipt of a carriage return,

will feed characters one at a time to the user via

successive calls on KBDA. During collection of the line,

and at any time until tnc input of a carriage return,

the line may be altered by the two editing characters,

LEFTARROW (*) and RUBOUT. LEFTARRON causes the last-

typed character to be deleted from the line image.

Two LEFTARROWs delete the last two characters, etc.

Backspacing beyond the first character in a line has no

effect. The ESC character (control-shift-K) cannot be

deleted by LEFTARROW. Typing the RUBOUT character causes

56

deletion of the whole line, at which time a pound sign

(*) and a carriage return are then printed by the key-

board routines so that input starts on a new line. (The

output of "•" and other system-control characters depends

on the current state of the echo condition. (See ECHO

below.)

If, when a carriage re:urn is entered, the first

character in the edited line is ESC, the line is sent

to the CLI. When the CLI is finished, the keybcard

is again available for input (see 2.3 Commar.J Language

Interpreter).

If, at any tine, the input buffer is full when a

character is typed, a LbFTARROW and RETURN will be typed

back at the user indicating that the last-typed character

did not enter the buffer (see ECHO). The user irust

then delete at least one more character so that he may

enter a caTiage return to end the line. The input buffer

has room for seventy-two characters; that is, seventy-one

characters plus carriage return.

When no read is outstanding on the keyboard (i.e.,

when KBDA has not been called, or when a line has been

entered and not entirely read from the buffer by repeated

calls on KBDA) the rnly input allowed is a command line

(i.e., a line begun with ESC). Any other input is ignored

In fact, a "«(RETURN)" is immediately typed back at the

user if he tries to type anything else (see ECHO).

MOTMM

57-

So that a user sitting at the teletype may know when

a program is expecting input, the program may choose the

option of supplying a prompting character (question mark-?)

when a new line is expected. This choice is given in the

system variable PRMPTC. Mhen PRMPTC it zero, the prompting

character is given. When PRMPTC is nonzero, the prompt

is not given. PRMPTC is defined in the LOCOSS symbols

and may be accessed directly by the user. For example,

CLC
DAC PRMPTC

will turn prompting off. Deletion of the input line by

RUBOUT or intervening CLI commands will cause the prompting

character to be re-issued at the beginning of the next

line. System reinitialization sets prompting on.

If a user starts an input line while a program is

printing, the printing will be halted until the input line

has been finished by either a carriage return or RUBOUT.

ECHO

The teletype on the PDP-7 can operate in either half-

or full-duplex mode by means of a throw switch on the

PDP-7. Half-duplex operation means that hardware in the

teletype controller will automatically print any character

that is struck on the keyboard. Full-duplex means that

58-

printing is completely Independent of keyboard operations.

Noraal operation under LOCOSS expects the switch to be in

the full-duplex position.

The two nodes of operation for control of the keyboard

are designated as "echo-on" and "echo-off." Which of these

two modes the keyboard routines should assume is determined

by the state of the system variable ECHOSW. When ECHÜSW

la zero, the mode is echo-ont when ECHOSW is nonzero, the

mode is echo-off. For example. "DZM ECHOSW" will change

the mode to echo-on. The mode may also be changed by the

ECN (echo-on) and ECF (echo-off) commands to the CLI.

System reinitialization sets echo-on.

When the system is in echo-on state, the keyboard

routines will print back at the user any character

struck on the keyboard and additional control characters

to help format the input and thus make it more readable.

Specifically, when in echo-on mode the keyboard routines

will:

1) Print any character struck on the keyboard;

2) Supply a line feed after every carriage return

typed by the user;

3) Supply a suitable number of spaces to position the

carriage at the next tab stop when a TAB la typed

by the user (see 2.5.2.3 Teleprinter, variable

TABCNT);

59.

4) Print an "AT" sign (t) when an ESC character

(control-shift-k) is typed by the user; and

5) Supply a LEFTARROW and carriage r turn on buffer

overflow, and a pound sign and carriage return

on RUBOUT or unsolicited input.

The echoed characters are kept in a separate print

buffer. If this buffer overflows, no characters which are

struck will be printed or entered into the keyboard buffer

until the echo buffer is emptied. In any case, the

printed line will be a faithful reflection of the contents

of the keyboard buffer.

In echo-off ode the system will not print the charac-

ter struck nor will it supply any of the control characters

described above. Thus, "echo-off" means that nothing

will appear on the teleprinter except what is specifically

printed by the user's program or the Command Language

Interpreter.

Echo-off mode is usually used in conjunction with the

337 display, so that the input line is displayed on the

screen rather than on the teleprinter. T~ assist this

process, the system keyboard input buffer is kept in

a state suitable to be used as a 337 display file of the

currently edited input line. This display file assumes

-60.

it will be entered via a PJMP and that the character

generator it in the seven-bit mode. The structure of

this file is:

KBDBUF. EDS1CHR

/ /edited line

/unused part of buffer
/are null characters

1 J /escape character
EDSISVEC
4C4S /put up the cursor
POP

The system variable KBDLOC contains the address of the buffer

control block for the system input buffer. (See 2.6

Buffer Management Routines for the structure of the

buffer control block.) So, in order to insert the editing

line into a display file, the following coding is sufficient:

LAC I KbDLOC /pick up the keyboard buffer..

/...location, i.e., KBDBUF

DAC EDILIN /store it in the display file

where EDILIN is the second word of a PJv:' instruction in

the user's display file. The user-supplied character

generator table is assumed to dispatch on the ASCII

character set, with zero a null character and ore (1)

the generator escape character (see Section 2.S.2.7 for

a use of this facility).

rm

61.

KBDA

KBUI

Purpose: To initialize the device-handling routine

for the keyboard to be the standard routine,

clear all input buffers, and reinitialize

the Command Language Interpreter.

Calling Sequence: 10F

KBÜI

RETURN, /10F

Purpose: To return in the low-order bits of the ac-

i
cumulator the next eight-bit character from

the input buffer, and also to cause the

prompting character to be given if prompt

ing is on and the buffer is empty.

Calling Sequence: KBOA

RETURN, /ION

See the discussion under KEYBOARD for the effect of

system variables ECHOSW and PRMPTC, and input editing.

2.S.2.5 IBM 1800 Logical Disk Files*

The logical file system for the IBM 1800 is available

to the PDP-7 across the 1800-7 interface when the appropriate

interrupt service subroutine has been initialized in 1800

* Brendcr, R.F., Frantz, D.R., Foy, J.L. Jr., and Schunior,
T.W., Specialized System Software for Interacting DEC
PDP-7 and IBM 1800, Technical Report 11, Concomp Project,
University öTVTcFTgan, Ann Arbor, October 1968.

•62.

memory. Details on the file routines are available in

another memo, but the features available to the PDP-7 are

briefly discussed below. In general, the user can treat

a disk file as a serial source and sink for characters.

He car. create, open, write into or read from, close, and

destroy files.

To write a file, the user must first create the file

(if it does not already exist), open it for output, write

into it, and finally close it. To read the file, he must

open it for input, read from it, and close it. By conven-

tion, symbolic files reside on the disk in EBCDIC and are

translated to and from ASCII on reads and writes by the

IBM 1800 interrupt service subroutine.

With regard to the file routines, the interaction

between the two machines is master (PDP-7) to slave (IBM

1800). The PDP-7 tells the 1800 when it wants something

done, the 1800 tries to do it, and then tells the PDP-7

whether the request was successful. Thus, every transfer

and command is acknowledged. If th» function requested

cannot be carried out (e.g., the file to be opened does

not exist or there is an end-of-file on a read), an error

indication is returned to the PDP-7 and the L0C0SS disk

routines will transfer to a user error routine. The disk

routines operate with interrupts on or off and do not

change the interrupts-enabled status.

63-

DSKGET

Purpose: To get an eight-bit character from the

currently opened input file.

Calling Sequence: DSKGET

RETURN,

The character returned will be translated from EBCDIC

to ASCII depending on the manner in which the file was

opened. (See below.) If no file is open, or if translation

to ASCII was requested and is not possible, or if the end

of the file has been reached, the 1800 will give an error

indication and control will pass to the current error rou-

tine .

DSKPUT

Purpose: To put the one or two eight-bit characters

in the accumulator into the currently

opened output file.

Calling Sequence: AC = 1 or 2 characters

DSKPUT

RETURN,

The characters will be translated from ASCII to EBCDIC

or not depending on the way the output file was opened.

(See below.) If no file is open or if translation to

EBCDIC was requested and is not possible, or if there is

no more room on the disk for files, the 1800 will give an

error indication and control will pass to the current error

routine.

^

\

64-

DISK

Purpose: General purpose communication with the IBM

1800 service routine.

Calling Sequence: AC ■ 8-bit character or file number

(if applicable)

DISK

Disk op code

RETURN, AC » character (if applicable)

The disk op codes are given below in symbolic form as

they are defined on the LOCOSS symbol tape. They represent

functions which the IBM 1800 interrupt service routine will

perform. This list may be extended. Only the low-order

eight bits of the accumulator are used. If any error occurs,

control will be passed to the current error routine. A

typical call would be:

LAW 15
DISK /open file 15 for input, translated.
D.OPIT

RETURN,

SYDSK

Purpose: General purpose communication with the IBM

1800 service routine with an immediate

error return.

Calling Sequence: AC = eight-bit character or file

number (if applicable)

65

SYSDSK

Disk op Code

ERRET, AC « error number

NRMRET, AC » character (if applicable)

&..SDSK is identical to DISK except that if an error

occurs, control will be transferred to location ERRET in-

stead of the error routine set up through DSKERR. If no

error occurs control is transferred to location NRMRET.

DSKERR's error exit is not disturbed by a SYSDSK call.

DSKERR

Purpose: To set the disk error return to a user

program.

Calling Sequence: DSKERR

ERROR INSTRUCTION

RETURN,

The error instruction will typically be a JMS or JMP

to the user's program. The last such error routine set up

by calling DSKERR will be executed by the LOCOSS disk error

handler if a disk error occurs in subroutines DSKGET,

DSKPUT, DISK, ICYRED, or ICYWRI. Upon entry to the user's

error routine, the accumulator will contain the error number

(see below) and location 20 (octal) will contain the service

request as presented to the 1800; i.e., bits 2-9 contain

the operation code and bits 10-17 contain the argument.

66-

If the user's error routine was entered by a JMS and it

does a normal subroutine exit to the LOCOSS disk error

handler, the entire accumulator will be returned to the

user disk call which caused the fault, as if nothing had

intervened. The default handling for a disk error (restored

by RESET and in effect until the user calls DSKERR) is to

print an error message (error number 3) and DELETE the cur-

rent line of execution.

The error codes are below (in octal). Some of these

error codes may also appear if the 1800 file routines are

snarked, but in that case it's all over anyway.

-67-

Table 2. Disk Operation Codes

OP CODE FUNCTION

D.tCHO Return the character in the AC. (Used mainly for

determining that the 1800 is awake.)

D.ECOA Return the ASCII equivalent of the EBCDIC character

in the cal1.

D.ECOB Return the EBCDIC equivalent of the ASCII character

in the cal1.

D.CRE Create a file with the number given in the call.

D.DES Destroy the file with the number given in the call.

D.OPOU Open the given file for untranslated output.

D.OPOT Open the given file for translated output (i.e.,

translate all characters to EBCDIC before storing

on the disk). •

D.PUT Put the character in the AC into the currently

opened output file.

D.CLO Close the output file.

D.OPIU Open the given file for untranslated input.

D.OPIT Open the given file for translated input (i.e.,

translate the EBCDIC characters to ASCII before

returning).

D.GET Get a character from the currently opened input

file.

D.CLI Close the input file.

OP COLE

D.CLR

R.REDT

D.WRIT

D.REDU

D.WRIU

-68-

Table 2 cont'd

FUNCTION

Close any files that are opened (cannot fail)

Get a character from the IBM 1800 copy task

translated.

Give a character to the IBM 1800 copy task

translated

Get a character from the IBM 1800 copy task

untranslated.

Give a character to the IBM 1800 copy task

untranslated.

i

-69-

M*-<

CODE (octalj

1

2

3

4

5

6

7

10

11

12

Table 3. Disk Error Codes

MEANING

13

14

Invalid command.

"Open" request rejected—no such file.

"Open" request rejected—file already

in use by another program at the moment.

"Put" error—file not open.

File overflow — no more room on disk

for "Put."

"Get" error—file not open.

"Close" error—file not open.

"Create" error—file already exists or

number not in legal limits.

"Create" error —no more room on the disk

"Destroy" error—no such file exists,

or the file is open. It must be

closed before being destroyed.

Translation to ASCII not possible on

read from file or translate command.

Translation to EBCDIC not possible.

If encountered on a "Put," a percent

sign (%) is inserted in the file.

70-

Table 3. cont'd

CODE (octal) MEANING

15 Copy port on IBM 1800 (ICY) busy.

Try again later.

16 Illegal use of bootstrap command (on a

file numbered more than 12 octa^J.

357 End-of-file read on a "Get," i.e.,

the last character has already been

read. The file is closed after this

error code is returned.

374 The 1800 copy port was quiescent on a

WRITE.

375 The 1800 copy port was quiescent on a

READ.

376 The 1800 didn't take the service request.

377 The 1800 took the service request but

didn't come back with an answer.

i

-71

**

2.5.2.6 IBM 1800 Copy Port

Another feature of the PDP7-IBM 1800 interface routines

is a logical connection to the copy port of the IBM 1800.

Thus the user may use other 1800 peripherals than the disk

in moving data to or from the PDV7 by issuing to the IBM

utility program the proper copy to or from "PDP-7.M

Running programs in the 1800 also have access to this port.

PDP-7 access to this facility is available through the

"DISK" subroutine with operation code parameters D.REDT

and D.WRIT for translated transfers (i.e., symbolic in-

formation) and D.REDU and D.WRIU for untranslated infor-

mation (i.e., binary characters). There is, however, a

special error code (octal 15) related to these commands

which indicates that the 1800 copy program is not ready
i

to service the call; e.g. data from previous D.WRITs

is still being copied to the typewriter, or the card reader

hasn't finished reading a card in response to a "D.REDT."

This "not ready" response indicates only a temporary

blocking condition and that the same command may meet with

success if attempted later. The four ICY (I_BM Cop^)

routines provided recognize this "not ready" condition and

try again after a decent interval. (The interval is to

allow the 1800 to exit from its interrupt servicing status

and do the other I/O work required.)

72-

If the 1800 returns "not ready," these routines will

take BUSY exits, allowing other task processing to continue.

Upon return from BUSY, the operation will be retried unless

a given time (about fifteen seconds) has passed since

the first try. If fifteen seconds have not passed, another

BUSY exit will be taken and the whole process repeated.

If the time is up, it will be assumed that the 1800 really

isn't trying very hard, and control will be passed to the

current disk error routine with an error number of 374

(octal) for WRITE and 375 for READ. Any other errors will

also cause control to be transferred to the current disk

error routine.

ICYRDT

Purpose: To read an eight-bit ASCII chracter from the

IBM 1800 copy port.

Calling Sequence: ICYRDT /I0F or ION

RETURN, /ION

If EBCDIC to ASCII translation of the character is not

possible or if the 1800 copy port appears to be quiescent,

i.e., never comes ready, control will be passed to the current

disk error routine. (See DSKERR.)

73-

ICYWRT

Purpose: To write the one or two eight-bit ASCII

characters in the accumulator to the

IBM 1800 copy port.

Calling Sequence: AC ■ one or two characters /ION or IOF

ICYWRT

RETURN, /ION

If ASCII to EBCDIC translation of one of the characters

is not possible or if the 1800 copy port appears to be

quiescent, i.e., never comes ready, control will be passed

to the current disk error routine. (See DSKERR.)

ICYRDU

Purpose: To read an eight-bit binary character from the

IBM 1800 copy port.

Calling Sequence: ICYRDU /IOF or ION

RETURN, /ION

If the 1800 copy port appears to be quiescent, control

will be passed to the current disk error routine.

ICYWRU

Purpose: To write the one or two eight-bit binary

characters in the accumulator to the IBM 1800

copy port.

Calling Sequence: AC ■ one or two characters /ION or IOF

74-

ICYWRU

RETURN,-

If thr 1800 copy port appears to be quiescent, control

will be passed to the current disk error routine. Recall that

if the high-order byte in a two-character transfer is zero, it

will be ignored.

2.5.2.7 Character Generator Package

The character generator package allows the user to dis-

play character data on the face of the screen by treating

the display as sink for ASCII characters in a format

compatible with other ASCI I-oriented devices.

The package is available as a set of routines to be

loaled from the IBM 2310 disk (see system routine LOAD

and the system file directory) or from the tape labeled

"HIGH CORE CHARACTER ROUTINES." Since there are no

relocation and program linkage facilities in the current

system, the package is londed into a predesignate 1 area:

16000-17577 octal. The dispatch table and displiy file

for the characters occupy (approximately) locations 16000-

17000, and the file-handling routines occupy about 17000-

17440; locdtions 17440-17577 are used as a default file

I ocat ion.

The file-handling routines and their parameters are

available to the user through a local transfer vector at

location 17000. In general, for the case of default

parameters, entry DISPLA will accept one or two ASCII

-75-

characters (in normal I/O format) and add them to the file.

If more than seventy-two (decimal) characters are put on

a line, a hyphen and a carriage return-line feed sequence

is automatically inserted after the seventy-second,

starting a new line. A maximum of forty lines is dis-

played, and the character file buffer is circular so that

only the last forty lines generated are on the screen,

with the oldest line being deleted from the top as new

ones are added on the bottom.

The package's display file also provides an echo line

on the display face for input from the keyboard. A cursor

appears at the bottom of the screen to indicate the entry

point for the next character to be typed. This echo line is

a faithful reproduction of the input line being collected

by LOCOSS, reflecting all editing. No more than seventy-

two characters will be accepted before a carriage return;

and if LOCOSS is not expecting, or will not allow, input,

nothing will appear on the echo line even if something is

typed (see 2.5.2.4 Keyboard). The echo line is quite

useful in conjunction with keyboard echo-off mode. There

is also a facility for the user to insert a push-jump into

the display regeneration loop so that he may display

other than character information on the face of the screen.

If the user wants to use only the characters and not the

file routines, he may load the package and then use the file

76-

routine area (17000-17577) for his own uses. Then, in

his display initialization sequence, he should include the

following to initialize the character generator:

LAW 216

SCG

/seven-bit mode, base of
/dispatch
/table at 16000

After this, to display characters the user merely includes

the enter data-state instruction and escape character

arcund an ASCII list; for example to display "AB" :

EDS1CI1ARR
301
302
ESCC1IR

/=1151
/=ASC11 "A"
/=ASCII "B"
/escape character.

(See below for control character definitions.)

Character File. The display file created by the

package is highly parameterized. The following is a

summary of the location in the transfer vector which will

be referred to symbolically in the discussion below.

All numbers are octal unless otherwise specified.

77-

NAME LOCATION DEFAULT

INDISP 1700U

STOPDY 17002

RESTRT 17004

DISPLA 17006

DSPBUF 17010 17454

BUFSIZ 17011 123

PDLIST 17012 4370

JMPLOC 17013

YLOC 17014 1760

LINES 17015 -50

CHARLIN

PBUSEF

SICLOC

17016

17017

17020

-111

0

4

DESCRIPTION

Entry to initialize display
and file.

Entry to stop display.

Entry to restart display.

Entry to add characters
to file.

Beginning of character
buffer.

Size of buffer.

Location of push-down list.

Location for a PJMP to
the user's file.

Vertical position on screen
for display file.

-Maximum number of lines
to be displayed.

-Maximum mrber of characters
or a line.

Push-button use flag.

Initial conditions for the
display.

78-

Characters. The complete set of ASCII characters is

programmed for the character generator with a dispatch

table operating in the seven-bit mode. This set includes

all printing graphics and the following special cases

for non-printing combinations.

OCTAL

000
001
004
005

on
012

014
015

021

023
033

16]

162

ASCII

NULL
SOU
EOT
WRU

TAB
LF

EFFECT

Does nothing.
Escape from character mode.
Down arrow (|). (For editor usage.)
Diamond (O). (For editor usage.)

Eight spaces.
Line feed. Decrease y-coordinate

by 12 (decimal).

FORM FEED Null. (For editor usage.)
CR

ETB

XOFF
ESC

Carriage Return. Set x-coordinate
to zero

Null. (For MTS use in ending a
prompt line.)

Null. (For editor usage.)
Displayed as "8" (L0C0SS Command

Character.)
One space.

Two spaces.

177 IS spaces. (161 to 177 are for TAB
spacing).

The remaining nonprinting characters are displayed as a

single space.

These characters are displayed in a 7 x 7 raster-

point matrix with the graphic itself on a 5 x 7 matrix.

-79-

y

Beam Position
Before — —♦> x

%

i Character Matrix
^ 1

Beam Position
$ < . .. _. After

Readable, solid characters (1/4 inch high) are produced at

scale two, at which scale 73 characters can be displayed across

the screen, and 42 lines can be displayed down the screen.

1NDISP

Purpose: To initialize the display and the display

file according the current state of the

parameter list and physically to start

thedisplay. »

Calling Sequence: JMS INDISP or INSERT or SUBTSK

IND1SP INDISP

Location DSPBUF is expected to contain the first

location of a region of core which is tobe used to keep the

circular file of characters displayed on the screen. BUFSIZ

contains the size of this buffer. The minimum size region

which can be used is ten (decimal) plus the maximum number

of characters allowed on the line. For example, if the

maximum number of characters per line were 73 decimal

(i.e., parameter location CHARLN contained-73) then the

minimum number that should appear in BUFSIZ is 83. The

-80-

default values for these three parameters (i.e., the values oc-

cupying these locations when the package is first loaded) pro-

vide a small display file in the upper part of core, just below

the system loader.

The contents of location PDLIST will be used to set

the push-down pointer for the display. The default condition

is to set it at 4370, by agreement with LOCOSS, so that four

levels of push-down are provided before normal task space

(at 4400) is invaded. The contents of location SICLOC will

be used to set the initial conditions in the display. The

default value of 4 provides for no edge flags, a one-by-

one sector, and no light pen, edge flag, push-button or

internal stop interrupts. The low-order ten bits of

location YLOC contain the vertical coordinate to be used

in positioning the display file. The default value of

1760 starts the file at the very top of the screen; a

value of 1000 would start the display at about the

middle of the screen. Location LINES contains the twos com-

plement of the naximum number of lines to display. Thus the

file will contain either the maximum number of characters

[C(BUFSIZ)-10] , or lines [-C(LINES)], whichever is smaller.

The default value of 40 (decimal) lines just about fills the

screen.

Location PBUSEF controls the use of the push buttons.

If it contains a nonzero number, the character generator

package will neither disturb nor interpret the push buttons.

-81-

If it contains zero, the package will interpret the push

buttons as explained in routine D1SPLA, and the initializa-

tion routine will clear buttons 6-11. The default value is

for the package to use the buttons.

There is a two-word no-op (i.e., zeros) in the dis-

play file created by 1NDISP. Location JMPUSE contains the

address of the first of these two locations. If a user wants

to add his display file to the display file maintained by the

package he may replace the two words addressed by JMPUSE with

a PJMP to his display file (being careful about core bank bits,

of course). The file so added should then end with a POP.

Any change of this sort requires that the display not be

running at the time of the change. (See STOPDY and RED1SP.)

INDISP sets the LOCOSS interrupt handling for ex-

ternal stop and manual interrupt. The, external stop handling

is necessary for the STOPDY subroutine which is called

whenever a character is added to the file. Thus the user

should handle all external stops through STOPDY. The default

handling for manual interrupt is to reinitialize the display

file, i.e., call INDISP. If the user wishes to use this button

for other reasons he need only call INTABL after INDISP to

reset the handling.

After initialization of the display file, INDISP

physically starts the display by calling RESTART.

STOPDY

Purpose: To stop the display if it is going.

Calling Sequences: JMS STOPDY or INSERT or SUBTSK.

STOPDY STOPDY

82-

STOPDY expects that the LOCOSS interrupt handling

for external stop has been set up already; thus, IND1SP should

be called before STOPDY.

Since there is no way to determine whether the dis-

play is running or not, the following scheme is used to en-

sure that it is indeed stopped when control is returned to

the user. The routine issues the display stop IOT (STPD),

waits for the external stop flag to appear, clears the flag

if it does, and then returns immediately. If, however, the

display was not running at the time the stop command was is-

sued, no flag will appear; STOPDY will wait approximately

1.5 milliseconds (which is the maximum time that the display

will delay response to the stop command) and then return

to the user, who is thus assured that the display is not

running.

RESTRT

Purpose: To physically restart the display (on the

character file regeneration loop).

Calling Sequences: JMS RESTRT or INSERT or SUBTSK

RESTRT RESTRT

RESTRT may be called after STOPDY to restart the

display. It changes nothing in the file but merely issues

the five lOTs necessary to get the display started at the

beginning of the file. The address of the push-down list

initialization is taken from locations PDL1ST, and the initial

83-

conditions are taken from location SICLOC.

DISPLA

Purpose: To add the one or two characters in the AC

to the display file.

Calling Sequences: AC = one or two characters, then...

JMS DISPLA or INSERT or SUBTSK

DISPLA DISPLA

The character generator dispatches on the low-order

seven bits of an ASCII character, but in the discussion of

control characters below, the high-order bit (i.e., bit "200")

is expected to be set for the character to be recognized as

given control character. The input stream of characters is

edited in the following manner. If the character is null

(000), rubout (377), character mode escape (001 or 201), or

line feed (212), it is ignored. If the character is a carriage

return (215), a line feed is added. If the character is a

TAB (211), the extra spacing required to postion the beam

at the next "tab stop" is calculated and inserted into the

file. The tab stop spacing is calculated exactly as in tele-

printer output so that a line output to the either teleprinter

or the display would have the same appearance in spacing on

both devices. In particular, the tab spacing is set from

system variable TABCNT. (Note, however, that a tab on the

input echo line gives a constant eight spaces and not the

proper tab spacing. This sad state is caused by the fact

84-

that the echo line display file is the input buffer itself

and cannot be changed for mere display purposes.1

If there is already the maximum number of characters

on a line (given by the contents of the parameter location

LINCNT, as a negative number in twos complement form) and

the input character is not a carriage return (215), a

hyphen and carriage return-line feed sequence are added to

the file so that the current character then will appear on a

new line. When there are more than the maximum number of

lines in the file (given by the contents of parameter loca-

tion LINES, as a negative number in twos complement form),

the top line of the file is deleted.

When a carriage return is encountered, the controls

of parameter location PBUSEF are checked. If PBUSEF is non-

zero, return to the vser is immediate. If PBUSEF is zero,

the push buttons are used as a means of slowing down or stop-

ping the addition of lines to the file, i.e., the return to

the user after addition of a carriage return is slowed down

or stopped. Specifically, return will not be made to the

user while push-button ten is on. If push-button eleven is

on, push-buttons 0-5 are read as a binary number, one (1)

is added to them, and the resulting sum is used as the number

of l/60s of a second to delay return to the user. Thus

push-buttons 0-5 all off provide 1/60 of a second delay

between lines, and push buttons 0-5 all on provide 64/60 or

1.07 seconds delay between lines. Both methods of delaying

i
MM*

85-

return employ a BUSY exit so that other task processing may

take place in the meantime.

2.5.2.8 Dataphone

The 201A dataphone, associated interface, and software

provide a half-duplex source and sink of 8-bit characters

from and to the regular telephone network. They provide

a medium-speed (2000-bits-per-second) link to any other data-

set which is operating under identical message formats.

In particular, this includes the Data Concentrator at the

University of Michigan Computing Center, which in turn pro-

vides access to the IBM 360/67.

The dataphone package is available as a set of routines

to be loaded from the IBM 2310 disk (see system routine

LOAD and the system file directory) or 'from the tape labeled

"DATAPHONE PACKAGE." Since there are no relocation and

program linkage facilities in the current system, the

package is loaded into a predesignated area: 14400-

15777 octal. This choice of addresses allows the

character package to be loaded also if so desired.

All links to the dataphone routines are made through

the LOCOSS transfer vector. Before the package is loaded,

these transfer vector locations will contain the address

of the DUMMY routine so that calls can be made to the

dataphone as if the routines were actually in core,

and all programming considerations (except perhaps timing)

86

will be the same as when the dataphone package is

actually present.

The following is a brief description of the problems

involved in handling this device so that the user can appre-

ciate the organization involved and the calling conventions

chosen.

The nature of the transmission is serial (bit-by-bit,

rather than character-by-character), synchronous (both

ends must agree on when a message is being transmitted,

and transmi'sion takes place at a constant rate), and

half-duplex (transmission proceeds in one direction at

a time). Theso three features, and the fact that the line

uses standard voice-grade telephone lines which are not of

impeccable quality, have led to rather elaborate hardware

and software conventions in message formatting and error

checking. Messages are checksummed linearly and every

data message is acknowledged(i.e., a message is sent to

the transmitting computer) if its received and calculated

checksums agree, or given a negative acknowledgment if

they do not. The latter case implies a request to re-

transmit the message since the information received could

not be trusted. In addition, some eight-bit patterns must

be used as line control characters (start of message,

end of message, etc.), so that conventions must be

followed to allow transmissions of binary information,

since a binary combination in the data stream may not be

meant as a control character.

.

87-

Most of this mechanism is removed from the user and is

reflected o.iy slightly in the basic output routines. This

fact makes the basic dataphone calling sequences device-

dependent (i.e., not exactly like the other devices),but

rather simple routines for the special case of alphanumeric

data have been written to resolve this conflict For this

special case of all-ASCII transmissions, message boundaries

are cued on a special character (carriage return). Since

the device is also intended to provide binary transmission,

this resolution is difficult in general, so that other

specific handling is left to the user and the lowest level

handling will be of eight-bit, transparent binary characters.

The system routines handle all other message formatting,

error checking, requests for retransmission, etc. Incoming

messages are not passed to the user when he requests input

until the checksum is verified; and no additional messages

are sent until the last has been positively acknowledged.

The only exception to this rule occurs when an "attention"

is generated from either end. An attention clears any

blocking condition due to bad messages or unacknowledged

transmissions, and, when sent to MTS (Michigan Terminal

System; see Bibliography) will cause the program executing

in the 360 to be interrupted.

88-

Dataphone Printouts. Messages which have bad checksums

are considered rare, and so a comment is printed on the

teleprinter so that this special condition can be noted

(for possible diagnostic purposes) although the retransmis-

sion is handled automatically. If a message is received

with a bad checksum the comment "%@R" is printed, and

if a negative acknowledgement is received in response to

a bad transmission from the PDP-7 the comment "%@T" is

printed. If a spurious positive or negative acknowledgment

is received (i.e., the PDP-7 isn't expecting one), something

is amiss and for lack of anything better to do, the comment

"%@S" is printed. An attention received at the PDP-7 will

clear up any blocking condition and cause the message

"%@A" to be printed on the teleprinter. A summary of all

control characters, including ACK and NACK, is given below.

Any message received at the PDP-7 which is started by

an ASCII even-parity STX (202) will have the STX stripped

and the rest of the message sent to the user. A message

which starts with an even-parity SOU (201) will be printed

on the t-'leprinter preceded by "%" instead of being

directed to the user. A message to the PDP-7 which needs

an SOU at the beginning as part of the data and is not

intended to be printed should begin with an STX to avoid

the SOU effect. The STX will be stripped by the device

handler and the SOU will then appear first to ehe user.

Thus, to be on the safe side, the user should start every

I
-89-

transmission to the PDP-7 with an STX. The STX will not

be given to the user routine in the PDP-7. (Note of warning:

other computers along the line also use the initial STX/SOH

convention as a text/command control character, stripping

it off and dispatching the rest of the message either to

the user or to its own command language interpreter,

respectively. Thus, an additional STX must be added to the

message for every computer or device controller in the line

of transmission which adheres to this convention. Most

notably (and infamously), this includes the Data Concentrator

and the 360 support routines. For example, to send an

initial data SOU from an MTS program to the PDP-7,the

following sequence must be sent: STX STX STX SOU. This
i

is a strange convention, and may be changed in the future.

-90-

Calling Conventions. In view of the foregoing, the

following basic calling conventions have been adopted.

For reading from the dataphone, the user merely calls

the read routine, DFNRED. All message checks and requests

for retransmission are handled by the low-level routines,

and the user is completely insulated from them. An in-

coming message beginning with an SOU will be printed on

the teleprinter preceded by "%>" and a message beginning

with STX will have the STX stripped and the rest of the

message sent to the user. The end of the message is

marked by one of the end-of-record characters: ETX, ETB,

HOM, or EOT. The entire list is included here for

completeness' sake alth ugh, except for extraordinary

(probably pathological) cases, only ETX and ETB will be

received from other machines. The user should always

attempt to read to the end of a message, for it is only

then that the local system will transmit a positive

acknowledgment to the other machine so that the latter can

send another message.

In transmission of messages over the dataphone, the user

must do three things: request the dataphone transmission

facilities, send the message, and indicate the end of

message. In requesting permission to transmit (via a SUBTSK

-91-

of task DFNREQ) the user implicitly waits until previous

dataphone transmissions have been completed and acknowledged,

and once permission is granted (return from DFNREQ),

he is ensured that no other task will be allowed at the

dataphone until the current message is finished. Once the

user has been assigned use of the dataphone, he may call

subroutine DFNSND and send one or two characters at a time

(in a format similar to the other device transfers). The

user indicates end-of-message by calling DFNSND with bit

zero of the accumulator set. This call allows him to

specify the default end-of-record character (ETX) or one

of his own choosing.

For the case of all ASCII, alphanumeric transmission

(e.g.,communication with MTS as a glorified teletype

terminal), there are two routines which have calling

conventions similar to the other I/O devices and which iake

the mappings from the record-oriented dataphone to a

stream of characters. On input, DFNRA maps the end-of-

text character into a carriage return. On output to DFNSA,

a carriage return ends a line and signals that the next

character to be sent starts a new record. Both DFNRA and

DFNSA call the respective lower-level routines described

above so that the user should be consistent in his choice

of input or output routines.

-92-

To send an "attention" over the dataphone the user

should call subroutine DFNATN. Attentions clear up any

blocking conditions existing at eitherend.

DFN1

Purpose: To initialize device handling for the dataphone

to be the standard routines, to clear the data-

phone buffers, and initialize the hardware so

that dataphone operation may begin.

Calling Sequence: IOF

DFN1

RETURN,

Subroutine DFNI initializes the hardware by clearing all

status bits and then setting "TERMINAL READY," and setting

the transmission frame size to eight-bit bytes. DFNI

should ba called (from the program or the CLI command

"DAT") immediately after loading the dataphone package.

DFNRED

Purpose: To obtain the next eight-bit character from

the dataphone receive buffer.

Calling Sequence: DFNRED /IOF or ION

RETURN, /with character in
/AC,ION

1
-93-

The end-of-record character (i.e., the last character

in the buffer) is one of the following: ETX, ETB, EOM,or

EOT, and is transferred to the user.

DFNREQ

Purpose: To obtain the use of the dataphone and to

start transmission.

Calling Sequence: SUBT5K

DFNREQ

RETURN,

Return is made when the dataphone is free for trans-

mission, i.e., when all previous messages have been sent

and positively acknowledged. Upon return the user is free

to call subroutines DFNSND. DFNREQ must be called before

every record is sent, and a DFNSND call with bdt zero of

the AC set must be made to end every record. DFNREQ starts

the dataphone transmitting, and since the transmission

is synchronous, nulls (i.e., characters which the other

machine will ignore) will be inserted in the data stream,

if data characters are not available, to keep the trans-

mission line happy. Thus, until the record is ended, the

line is locked in transmission mode and the other machine

cannot send a message to the PDP-7. So, in general,

transmission should be requested only if it can be foreseen

-94-

that the message will be terminated in a reasonable length

of time (e.g..ten seconds), although as long as the message

is ended some time no harm will be done.

DFNSND

Purpose: To send the one or two eight-bit characters

in the AC to the dataphone, or to end the

record.

Calling Sequence: AC = 1 or 2 characters in standard

form; or AC bit zero = one; and

low-order bits indicate the end-of-

record character.

DFNSND

RETURN,-

Any eight-bit pattern may be sent over the dataphone

in this manner. DFNREQ must have been called as a subtask

before DFNSND may be called. For any transmission longer

than seventy-three (73) characters (including the end-of-

record character) only the first seventy-three characters

will be transmitted.

The record will be ended if the high-order bit of the

accumulator is set on entry and the low-order eight bits

of the accumulator will be used as an end-of-record (EOR)

character. If the EOR character is a zero, the default

I

-95-

EOR will be used (ETX). It is recommended that the user

choose the default case rather than specify an ETX directly

because the bit configuration currently used for ETX may

be changed in the near future. After DFNSND is called

ending a message, DFNREQ must be called again to start a

new message. Another message will be permitted to start

when the current message is acknowledged.

DFNSA

Purpose: To send alphanumeric ASCII characters over

the dataphone.

Calling Sequence: AC = 1 or 2 characters /IOF or ION

DFNSA

RETURN,

A carriage return (215) will end a record and will be

replaced by an LTX. The first character after the carriage

return will start a new record. End-of-page characters

(214) and local end-of-files (023) will be sent as independent

records, ended by ETX.

DFNRA

Purpose: To read eight-bit alphanumeric character

information from the dataphone.

Calling Sequence: DFNRA

RETURN, /AC = character

-96-

An ETX will be mapped into a carriage return, but all

other end-of-record characters will remain the same.

DFNATN

Purpose: To send an "attention" over the dataphone

and to clear any blocking conditions.

Calling Sequence: I0F

DFNATN

RETURN, /I0F

Table 4. Dataphone Control Characters

CHARACTER OCTAL

SOH
STX
EOT

201
202
204

ETX
ATN(ENQ)
ACK

215
005
006

DLE
NAK
SYN

220
225
026

ETB
EOM

027
231

FUNCTION

Start of Header
Start of Text
End of Transmission (Hang Up)

End of Text
Attention
Positive Acknowledgment

Data Link Escape
Negative Acknowledgment
Synchronous Idle

End-of-Text Block
End of Message (MTS end-of-file)

-97-

2.6 Buffer Management

For those who wish to use the system buffer routines, the

following is a brief description of the available routines and

of the structure they assume.

Buffers in LOCOSS are linear and fixed in size. The in-

formation contained in the buffers may be in either alphanumeric

mode or binary mode. In binary mode, all eighteen bits of the

word are considered as a whole and are moved about as such. In

alphanumeric mode, the lower-order sixteen bits of a word are

broken into two eight-bit halves. The right-half byte is always

considered significant. The left-half byte is significant only

if it is nonzero. When a word is put into a buffer in alpha-

numeric mode the word is not split up but goes in as a whole.

As an option on alphanumeric "UTs, the two bytes will be packed

in the buffer if both the last word put into the buffer and the

current word being put both consist of only one byte and the

last word PUT was nonzero and has not yet been read.

On retrieval, the left-hand byte is considered first and,

if significant, is returned to the user. Then the right-hand

byte is given to the user. By the calling sequence, the user

indicates which mode is to be set in PUTing things into a buf-

fer. The GbT routine returns the next thing from the buffer and

indicates whether it was PUT in alphanumeric or binary mode.

Each buffer's status is indicated by a five-word Buffer

Control Block (BCB). The form of the BCB is as follows:

98-

-99-

Word 1: Location of the buffer

Word 2: Flags and Size

Bit 0 - 1 ^ Buffer may be packed on alphanumeric
PUTs.

Bit 3=1=^ Locked to output. Information may
not be taken from this buffer.

Bit 4=1^ Locked to input. Information may not
be put into this buffer.

Bit 5=1^ Buffer in binary mode.

Bit 6=1^ Buffer in alphanumeric mode.

Bit 5 = Bit 6 = 0 > Buffer empty.

Bit 6 - 17 = Size of buffer (max = 3777 octal).

Word 3: PI—Inbound Pointer. The last word put into the

buffer (if any) went into this location. Thus

the next word goes into location PI + 1.

Word 4: PO—Output Pointer. The next word to be taken from

the buffer (if non-empty) is at address PO + 1.

Word 5: Temporary Storage—for the right-hand character in

an alphanumeric fetch.

For example, the initial BCB for the teleprinter routines

looks like :

TPRBCB, TPRBUF
400017

TPRBUF
TPRBUF

/location of a buffer
/of size 15, originally empty, lock
/bits off.packing allowed
/PI
/PO
/temporary storage

The following routines clear a buffer, get from and put

into it, and lock and unlock it to input and output. The user

need only reserve the buffer area and set up the original BCB.

I

-100-

The routines then do all the work. Note that all buffer control

routines must be called with interrupts off, and that return

is made with interrupts off.

CLEARB

Purpose: To reset a buffer control block to indicate that

the buffer is empty.

Calling Sequence: I0F

CLEARB

BCB

RETURN,

BCB is the address of the associated buffer control block.

PUT

Purpose: To put a word into a buffer

Calling Sequence: LINK=M0DE

AC=WORD

IOF

PUT

BCB

ERRET, AC=W0RD

RETURN,

Where: Mode = 1 for binary put

= 0 for alpha put

BCB is the address of the associated buffer control block.

If the buffer is full, locked in, or already contains information

1

-101-

in a different mode than in the calling sequence, control is re-

turned to location ERRET with the AC=W0RD and the word not

having been put into the buffer. If the word has been put into

the buffer, control is transferred to location RETURN. Note

that the error condition has a two-word return, i.e., RETURN=

ERRET+2.

GET

Purpose: To retrieve the next item from a given buffer.

Calling Sequence: I0F

GET

BGB

ERRET,

Where

RETURN, /AG = ITEM, LINK=MODE

BGB is the associated buffer control block

ERRET is the location transferred to if the

buffer is empty or locked out.

RETURN is the location transferred to on suc-

cessful retrieval.

MODE = 1 ► the item returned is binary (18 bits)

= 0 >• the item returned is alphanumeric
(8 bits)

ITEM is the available information from the

buffer.

NOTE: The low-order 16 bits of an alphanumeric word taken from

the buffer are split into two eight-bit halves or bytes

and given one at a time, left byte first, to the user.

-102-

However, if the left byte is all zeros it is ignored

and the right is given immediately. The right byte is

always returned whether it is zero or not. This con-

vention is to allow characters to be put into the buf-

fer either one or two at a time.

LOCKB1

ALOWBI

LOCKBO

ALOWBO

Purpose: To allow and disallow transfers to and from

buffers.

Calling Sequence: I0F

LAW BCB + 1 /address of BCB status
word

XXXXXX

Where: XXXXXX is one of the routines:

LOCKBI - Lock buffer to input, i.e., disallow
PUTs.

ALOWBI - Allow buffer input.

LOCKBO - Lock buffer to output, i.e., disallow
GETs.

ALOWBO - Allow buffer output.

APPENDIX A

LOCOSS - USER SYMBOLS

103-

——«.- -»'a-

BLANK PAGE

I

-105-

Appendix A. LOCOSS User Symbols

L0C0SS-3 USER SYMBOLS--28AUG68

SUBTSK-JMS 1 2k
INSERT-JMS 1 25
BUSY »JMS 1 26
DELETE-JMP 1 27

CREATE«JMS 1 30
WAIT =JMS 1 31
SIGNAL=JMS 1 32
INTABL=JMS 1 33
RDRA »JMS 1 Ik
RDRB »JMS 1 35
RDRI »JMS 1 36
PCHA »JMS 1 37
PCHB »JMS 1 UO
PCHI »JMS 1 111
TPRA »JMS 1 42
TPRI »JMS 1 l»3
KBDA »JMS 1 kk
KBOI »JMS 1 k5

CLEARQ»JMS 1 kl
CLEARE-JMS 1 50
CLEARB»JMS 1 51
RESET »JMS 1 52
GET »JMS 1 53
PUT »JMS 1 ik
RDRSEL»JMS 1 55
PRMPTC» 56
ECHOSW- 57
TABCNT» 60
KBDLOC» 61
OFNRED»JMS 1 62
DFNSND-JMS 1 63
DFNREQ- 51»

DISK »JMS 1 66
OSKERR-JMS 1 67
DSKGET»JMS 1 70
DSKPUT»JMS 1 71
LOCKBO-JMS 1 72
ALOWBO-JMS 1 73
LOCKBI«JMS 1 7k
ALOWBI»JMS 1 75
CLOCK »JMS 1 76
LOAD »JMS 1 77

/INSERT A PROGRAM AS A SUBTASK
/INSERT AN INDEPENDENT TASK
/COME BACK LATER
/DELETE THE CURRENT TASK
/CREATE A UNIQUE EVENT NUMBER
/WAIT FOR AN EVENT TO OCCUR
/SIGNAL THE OCCURRENCE OF AN EVENT
/ENTER INTERRUPT HANDLER INTO INTERRUPT TABLE
/GET ALPHANUMERIC CHARACTER FROM READER
/GET BINARY WORD FROM READER
/INITIALIZE TAPE READER
/PUNCH ALPHANUMERIC CHARACTER
/PUNCH BINARY WORD
/INITIALIZE TAPE PUNCH
/TYPE ALPHANUMERIC CHARACTERS
/INITIALIZE TELEPRINTER ROUTINES
/READ ALPHANUMERIC CHARACTER FROM KEYBOARD
/INITIALIZE KEYBOARD ROUTINES

/CLEAR THE TASK QUEUE
/REINITIALIZE EVENT HANDLING
/CLEAR A BUFFER CONTROL BLOCK
/REINITIALIZE ALL OF LOCOSS
/GET A CHARACTER FROM A BUFFER
/PUT A CHARACTER INTO A BUFFER
/START THE TAPE READER
/PROMPTING CONTROL; 0 »> GIVE PROMPT
/ECHO CONTROL; 0 «> ECHO KEYBOARD
/TAB STOP SETTING
/LOCATION OF KEYBOARD BUFFER CONTROL BLOCK
/GET CHARACTER FROM DATAPHONE
/SEND A CHARACTER TO THE DATAPHONE
/SEIZE DATAPHONE FOR TRANSMISSION

INTERRUPT ROUTINE
FROM "DISK" CALL

DISK FILE
DISK FILE

/TALK TO IBM 1800
/SET ERROR RETURN
/GET A CHARACTER FROM A
/PUT A CHARACTER INTO A
/LOCK BUFFER TO OUTPUT
/ALLOW BUFFER OUTPUT
/LOCK BUFFER TO INPUT
/ALLOW BUFFER INPUT
/SET RETURN FROM INTERVAL TIMER
/LOAD A FILE FROM THE DISK

-10b-

OFNt
CLOCKI
RDRLOC
PCHLOC
DFNSA
DFNRA
DUMMY
RDOCT
RODEC
PROCT
PRDEC
DFNATN
SYSDSK
ASCOUT
ICYRDT
ICYWRT
ICYINI
TRMCHR
S0URC1
S0URC2
S0URC3
SINK1
SINK2
SINK3
LEDING
SEZTPR

JMS
JMS

JMS
JMS
JMS
JMS
JMS
JMS
JMS

JMS
JMS
JMS
JMS
JMS

100
101
102
103
lOk
105
106
107
110
111
112
113
11U
115
116
117
120
121
122
123
12U
125
126
127
130
131

ICYRDU-JMS I 133
ICYWRU=JMS I 13U

O.ECHO^
D.OPOP
Ü.OPIT
O.PUT l

.GET ■
Ü.CLO ■
D.CLI '
D.CLH '
D.CRE '
D.DES •
D.OPOU'
D.OPIU'
D.ECOA'
D.ECGB-
O.BOOT«
D.REDT«
D.WRIT'
O.REDU'
D.WRIU'

=U0Uüü
'01000
'01U00
•02000
=Ü2U0Ü
'03000
>03i4Ü0
'ÜUOOO
■OkkQO

>05t»00
:061+0Ü
07000

'10000
10U0Ü
•11000
uuoo
12000
12U00
13000

/INITIALIZE DATAPHONE
/INITIALIZE CLOCK ROUTINES
/LOCATION OF READER BUFFER CONTROL BLOCK
/LOCATION OF PUNCH BUFFER CONTROL BLOCK
/SEND ALPHANUMERIC CHARACTER TO DATAPHONE
/READ ALPHANUMERIC CHARACTER FROM DATAPHQUE
/DUMMY ROUTINE. BOTH SOURCE AND SINK, TOO.
/READ OCTAL NUMBER
/READ DECIMAL NUMBER
/OUTPUT OCTAL NUMBER
/OUTPUT DECIMAL NUMBER
/SEND ATTENTION OVER. DATAPHONE
/TALK TO IBM 1800, WITH IMMEDIATE ERROR RETURN
/OUTPUT A LIST
/READ FROM IBM 1800 COPY PORT TRANSLATED
/WRITE TO IBM 1800 COPY PORT TRANSLATED
/INITIALIZE IBM COPY PORT ROUTINES
/TERMINATING CHARACTER FOR RDOCT AND RDDEC
/ASSIGNABLE SOURCES

/ASSIGNABLE SINKS

/LEADING ZERO REPLACEMENT
/SEIZE TELEPRINTER ROUTINES

/READ FROM
/WRITE TO

IBM 1800 COPY PORT UNTRANSLATED
BM 1800 COPY PORT UNTRANSLATED

/DISK OPERATOR DEFINITIONS

/01
/02
/03
/Ok
/OS
/06
/07
/08
/09
/U
/13
/Ik
/16
/17
/18
/19
/20
/21
/22

ECHO
OPEN OUTPUT FILE TRANSLATED
OPEN INPUT FILE TRANSLATED
PUT TO OUTPUT FILE
GET FROM INPUT FILE
CLOSE OUTPUT FILE
CLOSE INPUT FILE
CLOSE ALL FILES AND CLEAR
CREATE FILE
DESTROY FILE
OPEN OUTPUT FILL UNTRANSLATED
OPEN INPUT FUE UNTRANSLATED
EBCDIC TO ASCII ECHO
ASCII TO EBCDIC ECHO
BOOTSTRAP STYLE LOAD
READ FROM COPY PORT TRANSLATED
WRITE TO COPY PORT TRANSLATED
READ FROM COPY PORT UNTRANSLATED
WRITE TO COPY PORT UNTRANSLATED

FIX
PAUSE

-107-

L0C0SS-3 USER SyMBOLS--28AUG68

ALOWBI
CLEAKB
CLOCKI
DFNI
DFNSA
DSKGE1
D.CLI
D.DES
D.GET
D.OPOU
D.WRIT
1CYINI
ICYWRU
KBDI
LOCKBI
PCHI
PROCT
RORA
RDRSEL
SINK1
S0URC2
TABCNT
WAIT

120075
120051
120101
120100
120104
120070
3400
5400
2 400
6400
12000
120120
120134
1200 45
120074
120041
120111
120034
120055
125
123
60
120031

ALOWBO
CLEARE
CREATE
OFNRA
DFNSND
DSKPUT
O.CLO
D.ECHO
D.OPIT
D.PUT
D. WRIU
ICYRDT
INSERT
KBOLOC
LOCKBO
PCHLOC
PUT
RDRB
RESET
SINK2
S0URC3
TPRA

120073
120050
120030
120105
120063
1200 71
3000
400
1400
2000
13000
120116
120025
61
120072
103
120054
120035
120052
126
124
1200 42

ASCOUT
CLEARQ
DELETE
OFNREO
DISK
DUMMY
D.CLR
D.ECOA
D.OPIU
D.REDT
ECHOSW
ICYRDU
INTABL
LEDING
PCHA
PRDEC
RDDEC
RDRI
SEZTPR
SINK3
SUBTSK
TPRI

120115
120047
62002 7
120062
120066
120106
4000
10000
7000
11400
57
120133
120033
130
120037
120112
120110
120036
131
127
120024
120043

D.
D.
D.
D.

BUSY
CLOCK
DFNATN
DFNREO
DSKERR
D.BOOT

CRE
ECOB
OPOT
REDU

GET
ICYWRT
KBDA
LOAD
PCHB
PRMPTC
RDOCT
RDRLOC
SIGNAL
SOURC1
SYSDSK
TRMCHR

120026
120076
113
64
120067
1 1000
4400
10400
1000
12400
120053
120117
120044
120077
120040
56
120107
102
120032
122
120114
121

APPENDIX B

SYSTEMS INFORMATION

109

I

APPENDIX B

SYSTEMS INFORMATION

The information in this section is meant to provide as-

sistance in understanding the program listings and thus to aid

program maintenance. In general, LOCOSS is a collection of

subroutines and, as such, the description of the individual

subroutines and the general comments at the head of each sec-

tion provide most of the information needed to specify completely

the action taken by an individual routine. In these cases the

comments in the listings and the description in the user's

manual will not be supplemented here. There are, however, four

sections of interest in which there is an underlying structure

not completely specified in the user's manual and which must be

understood in order to make sense from the listings. These are:

the structure of the task queue, the structure of the event

table, the mechanism of the Command Language Interpreter, and

the conventions for information transfer across the IBM 1800-

PDP-7 interface. An additional topic, the structure of the

loaders, is discussed in the section on core image formats.

TASK QUEUE

The task queue is a fixed-length buffer containing a

linked list of task control blocks (TCBs). A TCB contains

the information needed to start some program as a task. It

consists of five words with the following format.

Ill

-112-

Word 1: Link pointer to the next task in the queue.

Word 2: livent control word.

Bit 0: =^ This TCB is not part of an event chain,

i.e., it was put into the queue by

INSERT, SUBTSK, or BUSY, and may be

started in the normal manner.

=1 This TCB is part of an event chain.

Do not activate it until bit zero is

zero .

Word 5: Activation word.

Bit 0: =0 Enter as a JMS when the task is

enterable .

=1 Enter as a JMP when its turn comes

(always enterable).

Bits 5-17: Location of program entry point.

Word 4: Return pointer, Bits 0-17, meaningful only for

JMS entr> ,

Word 5: Parameter word. Bits 0-17. This was the contents

of the accumulator when the multiprogramming

system was called and will be restored before

control is returned to the user program.

Calls to INSERT and SUBTSK cause the activation word to

be set wholly from the Icration following the calling instruc-

tion so that tlu user has control over the method of entry to

the addressed task (by setting the high-order bit as desired).

1

-113-

BUSY sets the high-order bit of the aclivation word so that

return will be made via a JMP entry. These three calls all

zero the event control word. A call on WAIT sets the activa-

tion word as in BUSY, sets bit zero of the event control word

to onejarJ sets the rest of the word as described below in the

event descriptions.

The multiprogramming system maintains three variables

which describe the state of the queue. QHEAD contains the

address of the first TCB in the linked list, i.e., the next

TCB to be activated. QTAIL contains the address of the last

TCB on the list, i.e., the point at which another TCB may be

added to the list. QFREE contains the address of the first

unused TCB in a linked list of free storage.

Upon initialization, all of the area used for the queue

is split into five-word blocks, and linked together, forming

the free storage list. The first word of each block is a

pointer to the next block, and the end of the list is marked

by a zero pointer. One five-word block is reserved as the

"idle task." This TCB has its event control word set so that

it is never activated. Its link pointer points to itself sc

that the list forms a ring. Both QHEAD and QTAIL point to

the idle task TCB.

The task control loop onorates as follows. The TCB ad-

dressed by QHEAD is considered for activation. If the TCB

may not be activated it is put at the end of the queue; that

is, the pointers QHEAD and QTAIL are changed so that QTAIL

points to the rejected task and QHEAD points to the next task

-114-

in the queue (the TCB addressed by the link pointer of the re-

jected TCB). If the TCB may be activated (i.e., the event

control word is not set and the task is enterable)^ it is re-

moved from the queue, and control is transferred to the task

in the appropriate manner.

Removal from the queue consists of closing up the link

pointers and adding the used TCB to the free storage list.

Used TCBs are linked to the head of the free storage list and

new TCBs are obtained also from the head of the freo storage

list. A new TCB is created by calls to INSERT, SUBTSK, BUSY,

and WAIT, and is added to the queue by obtaining a TCB from

the free storage list and linking it into the queue after the

TCB addressed by QTA1L. The link pointer of the new TCB is set

to point to the TCB addressed by QHEAD. Thus the queue is al-

ways maintained as a ring of TCBs. At initialization time the

ring consists of one TCB which can never be removed from the

list, and which points to itself. Insertions and deletions

from the queue, then, only expand and contract the size of the

ring .

If at any point a new TCB is needed and the free storage

head, QFREE, points to a zero word, there is no room in the inn

and control is passed to the LOCOSS error handler.

EVENT CONTROL

The event table consists of a fixed number of Event Con-

trol Blocks (ECBs), consisting of two words each. If the first

word of the ECB is zero the block is not being used. If the

1

I
-115-

first word is nonzero then its contents (a number) name an

event which has been created and which has not yet been sig-

naled. The second word of t.he block, then, is a pointer to

the head of a linked list of Task Control Blocks (TCBs) naming

tasks which have called subroutine WAIT with the event named

as parameter; i.e., these are tasks awaiting the occurrence

of the named event. If the second word of the ECB is zero,

then no tasks have yet executed calls on WAIT.

When a user program calls CREATE, a unique number for an

event is produced by using the contents of location EVNO. After

this number is used, the contents of EVNO are incremented by

one so that the next call on CREATE will produce a different

number. A search is then made of the event table, looking for

an ECB with a first word zero (i.e., an unused ECB). If none

is found, control is passed to the error processor. If an

empty ECB is found, the new event number is stored in its first

word establishing it as an occupied ECB; the second word is

zeroed, indicating that no tasks are waiting for the event.

When a task calls WAIT, a search is made of the event

table for the event given in the call. If an ECB for the

named event does not exist, it is assumed that the event has

already occurred or that it has not been created yet, and

control is returned immediately to the user. If the event

has an ECB, a TCB is created for the task and added to the

task queue. The event control word of the TCB (word two) is

then established as the head of the linked list of TCBs waiting

-116-
for that event to take place. The end of the list is indica-

ted by Bits 1-17 of the event link-pointer (TCB word two) being

zero. Word two of the ECB is then set to point to the head of

the list of TCBs. Note that the list is a sequence of TCB-

word-twos, not of the TCBs themselves.

When a program calls SIGNAL, a search is made of the

event table. If the event named has no ECB, return is

immediate to the calling program, since the event has already

taken place, or was never really created. If the event does

have an ECB, the list of TCBs is threaded, zeroing all the

event control words, thus enabling those TCBs to be reacti-

vated the next time they come up for reconsideration. The

first word of the ECB is then zeroed, indicating that the

event has occurred. Any further WAITs or SIGNALS will have

immediate returns since no ECB exists for that event.

THE COMMAND LANGUAGE INTERPRETER

The CLI is a straightforward command processor which cues

on three-letter commands and dispatches to the specific handler

for each command. For those commands taking nuireric parameters,

the CLI uses "RDOCT" and "RDDEC" routines very similar to the

ones available to users and described in the section on

general routines. For the device assignment commands, the

syntax is enforced by restricting the portion of the command

table which will be searched.

The CLI is an interrupt-time package. This means that

any command entered via the keyboard is acted upon as soon as

the keyboard routines receive the interrupt from the entry of

117-

the carriage return ending the line. This feature ensures that

the CLI is always available to the user and that the user may

be sure that his request is acted upon as soon as it is recog-

nized; that is, the CLI does not have to compete with task time

for CPU control or for system resources (subroutines, teleprinter,

etc.)- However, there are some command functions which require

that interrupts be turned on. For example, a DMP command may

require the output of several lines of numbers. Interrupts

may not be turned off during the time-consuming output of these

numbers since there is at least one synchronous device (the

dataphone) which must run under interrupt control. To achieve

this capability the CLI essentially "pushes down" task-time con-

trol and establishes itself as the active task. More specifi-

cally the CLI saves all the interrupt-saved registers and then

turns interrupts on. If an interrupt occurs during CLI pro-

cessing, the interrupt identifier saves the registers as usual

and then processes the interrupt normally. Upon completion of

the servicing, the interrupt processor restores the registers

for the CLI and returns control to the CLI. When the CLI is

done processing, it restores the registers it has pushed down

and transfers control to the interrupted task-time program.

The only possible source of embarrassment which may occur

is re-entry to the CLI while it is already executing. This

nuisance is remedied by cutting it off at the source—the

keyboard dispatcher. If a keyboard interrupt occurs while the

CLI is executing, the registers which were pushed down are

-118-

immediately popped up so that the interrupt processor will use

these first-level registers upon return from the keyboard pro-

cessing, and thus return control to the task-time routine

originally interrupted. Thus, a keyboard interrupt will abort

CLI activity; and, since it is only by keyboard activity that

the CLI may be invoked, the CLI will never be invoked while

already running.

IBM 1800 COMMUNICATION ROUTINES

All communication with the IBM 1800 across the "minor"

interface is performed on a request basis (with one exception*)

with the PDP-7 initiating all information transfers. The data

path from the PDP-7 to the 1800 is sixteen bits wide. Of this,

the high-order eight bits are used to specify a function to be

performed by the 1800 service routine. The low-order eight

bits are treated as data according to the specific function re-

quested. In general, the data may be an eight-bit character,

a file number, or immaterial.

Upon receipt of the information from the 7, the 1800 at-

tempts the function requested and, in the twelve-bit path from

the 1800 to the 7, returns either a four-bit positive or nega-

tive acknowledgment to the request and an eight-bit data byte.

Again, depending on the function, the datum may be a character.

* Brender, R.F., Frantz, D.R., Foy, J.L. Jr., and Schunior,
T.W., Speciali zed System Software for Interacting DEC
PDP-7 and IBM 1800, Technical Report II, Concomp Project,
University of Michigan, Ann Arbor, October 1968.

L

-119-

an error code (in case of negative acknowledgment), or it may

be meaningless.

To check for possible failure of the interface in actual-

ly transferring information, the disk routines perform time-

outs on the two directions of information transfer. Thus, if

the 1800 is not listening (i.e., does not have a pending read),

the disk routines will wait about a second and a half, and then

return an error code to the user's program.

BIBLIOGRAPHY

PDP-7 User's Handbook, DEC No. F-75, Digital Equipment Corpora-
tion, Maynard, Mass., 1965.

Mills, D., RAMP: A PDP-8 Multiprogramming System for Real-Time
Device Control, Technical Memorandum, Concomp Project,
University of Michigan, Ann Arbor, May 1967, 24 pp.

Wood, D.E., A 201A Data Communication Adaptor for the PDP-8,
Memorandum 15, Concomp Project, University of Michigan,
Ann Arbor, February 1968, 134 pp.

Brender, R.F., Frantz, D.R., Foy, J.L. Jr., and Schunior, T.W.,
Speciali zed System Software for Interacting DEC PDP-7 and
IBM 1800, Technical Report 11, Concomp Project, University
of Michigan, Ann Arbor, October 1968.

Brender, R.F., and Foy, J.L. Jr., Flexible High-Speed Interface
between IBM 1800 and DEC PDP-7 Computers, Technical Report
12, Concomp Project, University of Michigan, Ann Arbor,
October 1968.

MTS: Michigan Terminal System, 2nd ed.. Computing Center, and
Concomp Project, University of Michigan, Ann Arbor,
December 1967, 2 vols.

Mills, D.L., The Data Concentrator, Technical Report 8, Concomp
Project, University of Michigan, Ann Arbor, May 1968,
113 pp.

120-

Unciassi fieri -121
Security Classification

DOCUMENT CONTROL DATA • R&D
(Saeurtlv clmmtlllcallon ol till», body ol mbttnct and Indtxing «nnolar'on mu»l b» mnfnd whtn Ihm ovmrmll rtpori it clmmlimd)

1 ORIGINATING ACTIui-ry fComor««» author;

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

1«. HEPORT tICuniTV C LAIIIFICATION

Unclassi fied

2» GROUP

3 REPORT TITLE

LOCOSS: A Multiprogramming Monitor for the DEC FDP-7

4 DESCRIPTIVE NOTES (Typt ol report and tnclutlvo dato«;

Technical Report 10
S AUTHORCS; O-aot nam«. Hnt nama, Inlllml)

D.R. Frantz, R.F. Brender, and J.L. Foy, Jr.

6 REPORT DATE

November 1968
7a TOTAL NO OF PAOCI

120
76. NO. OF RKFt

8a CONTRACT OR GRANT NO.

UA-49-083 ÜSA-3050
b. PROJECT NO.

• a. ORiaiNATOR'» REPORT NUMBCRfS.)

Technical Report 10

$b OTHKR RfPORT NOC»; (Any oth»i mmtbort tfiat may *a a**/*ia<*
tfita raporO

10 AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC

1 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13 ABSTRACT

LOCO
was
to r
an e
Prov
(par
prov
Co mm
and
and
gram
devi
201A
gram
rout
octa
disk

SS (
deve
un a
ssen
isio
alle
ide
and
simp
esse
s wi
ces
dat

s).
ines
1 or
, an

Logi
lope
ppli
tial
n is
1) 1
a fl
Inte
le d
nt ia
th r
supp
apho
and
are
dec

d se

c £f
d to
cat'i o
part
made

ine
exib 1
rpret
ebugg
lly d
ef ere
orted
ne, I
the 3
aval

imal
tting

£omp
prov
ns p
of
for

of e
e me
er p
ing
evic
nces
are

BM 1
37 d
labl
numb
an

uter
ide
rogr
the
alt

xecu
ans
rovi
aids
e-in
to

: t
800
ispl
e fo
ers ,
inte

s 0 p e r a t
a suitab
ams. Mu
system a
ernate m
tion and
of inter
des a nu

Input
dependen
generali
eletype,
(the dis
ay as a
r such u
loading

rval tim

ing System for
le run-time env
1 tiprogramming
nd allow a flex
ethods of estab
for invoking a

task communicat
mber of real-ti
/output is buff
t, al lowing use
zed "sources" a
paper tape rea

k file system a
character sink,
ser needs as re
a program from

er.

AT

the PDP-
ironment
capabili
ible org
li shing
subtask

ion. A
me contr
ered, ov
rs to wr
nd "sink
der and
nd runni

Additi
ading an
the IBM

Save
in

ties
ani z
a se
. E
keyb
ol s
er la
ite
s."
punc
ng P
onal
d wr
180

n)
whi ch
are

ation.
parate
VENTS
oard
ervices
pped,
pro-

1/0
h.
ro-
sub-

iting
0

DD FORM
I JAN 64 1473 Unclassified

Security Classification

HiftAmiiiij
Secmity CU«iific«tion

-122.
••n 14

KEY WORDS
LINK A

■ OLE

LINK ■
■ OLE

LINK C

NOLt

PDP-7

Multiprogramming

Moni tor

Executive System

Small Computers

Keyboard Monitor

.

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and a<Mrata
of the contractor, aubcontractor, grantee, Department of De-
fenae activity or other organization (corporate author) iaauing
the report.

2a. REPORT SECUÜTY CLASSIFICATION: Enter the over-
all aecurity claaaification of the report. Indicate whether
"Reatricted Data" ia included Marking la to be in accord-
ance with appropriate aecurity regulation*.

2h. GROUP: Automatic downgrading ia apecified in DoD Di-
rective S200.10 and Arnn-d Forcea Induatrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titlea in all cases should be unclassified.
If a meaningful title cannot be selected without claaaifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
re^nrt, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period ia
covered.
5. AUTHOR(S): Enter the name(s) of authoK*) aa shown on
or in the report. Entet laat name, first name, middle initial.
If xilitary. show rank vnd branch of service. The name of
the principal • <thor is an absolute minimum requirement.

6. REPORT DATL: Enter the date of the report aa day,
month, year, or month, year. If more than one date appears
on the report, use date of publication.

la. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information,
',b. NUMIiER OF REFERENCES: Enter the total number of
rt-fcrences cited in the report.
8«. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report waa written.
86, 8c, &. id. PROJECT NUMBER: Enter the appropriate
military department identification, auch as project number,
subproject number, aystem numbera, task number, etc.
9a. ORIGINATORS REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. Thia nunber muat
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report haa been
asaigned any other report numbera (either by the originator
or by (he sponsor), alao enter thia number(s).
10. AVAILABILITY/LIMITATION NOTICES: Enter any 11m-
itationa on further dissemination of the report, other than those

imposed by aecurity classification, using standard atatementa
auch aa:

(1) "Qualified requesters may obtain copies of thia
report from DDC"

(2) "Foreign announcement and dissemination of thia
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copiea of
thia report directly from DDC. Other qualified DDC
uaera shall request through

(4) "U. S. military agencies may obtain copiea of this
report directly from DDC Other qualified uaera
ahalt request through

(S) "All distribution of this report is controlled Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate thia fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory Sponsoring (pay
ing lor) the reaearch and development. Include address.

13 ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may alao appear elsewhere in the body of the technical re-
port. If additional space is required, s continuation aheet shall
be attached.

It ia highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shsll end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation en the length of the abatract. How-
ever, the suggested length is from 150 to 225 worda.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be uaed aa
index entries for cataloging the report. Key worda must be
selected ao that no security claaslfication is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be uaed as key
worda but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional

OPO ••(■»»!
Unclassified

Security Classification

